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ABSTRACT

The detection of complex spatially and temporally varying coherent structures in data from highly nonlinear

and non-Gaussian systems is a challenging problem in a wide range of scientific disciplines. This is the case in the

analysis of Doppler on Wheels (DOW) mobile Doppler radar (MDR) data where the goal is to detect rapidly

evolving coherent storm structures that reflect the complex interplay of nonlinear dynamical processes. Esti-

mating andquantifying such structures from the noisy and relatively sparsely sampledMDRdata poses a difficult

inverse problem for which traditional analysis methods such as expert and subjective pattern recognition,

thresholding, and contouring choices can be difficult. In this paper the authors investigate the application of a

recently developed objective method for the analysis of spatiotemporal data called the entropy field de-

composition (EFD) to the problem of the analysis of MDR data in tornadic supercells. The EFD method is

based on a field theoretic reformulation of Bayesian probability theory that incorporates prior information from

the coupling structure within the data to automatically detectmultivariate spatiotemporal modes. Themethod is

first applied to data from a numerically simulated tornadic supercell in order to validate the method’s ability to

detect and quantify known storm-scale features. It is then applied to actual MDR data collected during the

evolution of a tornadic supercell—data that have been analyzed previously by experts. The authors demonstrate

the ability of the EFD method to detect spatiotemporal features currently believed to be related to tornado-

genesis. This newmethod has the potential to provide improved and objective analysis/detection with increased

sensitivity to nonlinear and non-Gaussian spatially and temporally coherent features related to tornadogenesis

and thus offers the potential to aid in the study, prediction, and warnings of tornadoes.

1. Introduction

The mechanisms by which tornadoes are formed

within supercell thunderstorms (tornadogenesis)

remain a significant scientific mystery. This is a problem

of both great scientific interest and social impact, as the

ability to understand tornado formation is critical in

reducing the time between issuing of tornado warnings

to potentially affected populations and tornado forma-

tion. However, the interplay of spatiotemporally varying

processes within the highly dynamic supercell environ-

ment that result in the formation of tornadoes is much

too complex to lend itself to analytical modeling, leaving

essentially two methods as viable approaches to

addressing this problem: numerical simulation (e.g.,

Klemp and Rotunno 1983; Rotunno and Klemp 1985;

Wicker and Wilhelmson 1995; Adlerman et al. 1999;

Markowski et al. 2003;Markowski andRichardson 2014;Corresponding author: Lawrence R. Frank, lfrank@ucsd.edu
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Orf et al. 2017) and observational methods, such as

Doppler radar and in situ observations (e.g., Brandes

1978, 1984; Dowell and Bluestein 1997; Wakimoto and

Cai 2000; Wakimoto et al. 2011, 2012; Trapp 1999;

Dowell and Bluestein 2002a,b; Markowski et al. 2002;

Beck et al. 2006; Wurman et al. 2007b,a,c; Grzych et al.

2007; Marquis et al. 2008; Wurman et al. 2010; Atkins

et al. 2012;Marquis et al. 2012;Markowski et al. 2012a,b;

Kosiba et al. 2013; Kosiba and Wurman 2013; Wurman

and Kosiba 2013; Wurman et al. 2014). Both of these

approaches present their own tremendous technical

challenges that have nonetheless been met with a long

history of innovative research that leverages significant

advances in both computational capabilities and radar

hardware to bring an increasingly deep understanding of

tornadogenesis.

However, while computational modeling (e.g., simu-

lation) and observational experiments [e.g., the Doppler

on Wheels (DOW) (Wurman et al. 1997) and other

mobile Doppler radar (MDR) systems] are essential

tools of any comprehensive program aimed at un-

derstanding tornadogenesis, so is a robust and accurate

quantitative approach for estimating coherent spatio-

temporal features within these highly nonlinear and

non-Gaussian multivariate data, whether real or simu-

lated. As numerical simulations become increasingly

capable of recreating tornadogenesis using realistic

physical models there becomes a greater need for so-

phisticated analysis methods that can characterize the

resulting nonlinear and non-Gaussian multivariate spa-

tiotemporal patterns, or modes, of severe convective

storms. More accurate and objective analysis methods for

data acquired in these nonlinear systems and contaminated

with non-Gaussian noise are necessary to provide robust

comparisons with both simulated storms and with theo-

retical predictions. With this increased accuracy comes the

ultimate goal of a better understanding of the mechanisms

of tornadogenesis aswell as the possibility ofmore accurate

prediction and subsequent warning of tornadic events.

To address this type of problem, we have recently de-

veloped a new general approach to the analysis of spa-

tiotemporal data called the entropy field decomposition

(EFD) (Frank and Galinsky 2016a,b), which combines

information field theory (IFT) (Enßlin et al. 2009) with

prior information encoded on spatiotemporal patterns

using our recently introduced method of entropy spec-

trum pathways (ESP) (Frank and Galinsky 2014). The

formulation of this method is quite general and can be

applied to any form of time-varying multivariate volu-

metric data, a point emphasized by our initial demon-

stration of the general theory (Frank andGalinsky 2016b)

on both functional magnetic resonance imaging (FMRI)

data and dual-Doppler radar data collected by a DOW

MDR (Wurman et al. 1997; Wurman 2001) during the

genesis and intensification of the Goshen County,

Wyoming, tornado on 5 June 2009 observed in the Second

Verification of the Origins of Tornadoes Experiment

(VORTEX2) (Wurman et al. 2012; Kosiba et al. 2013).

The purpose of the current paper is to apply the EFD

method to both simulated and real data from severe

convective storms in order to assess its capability of

detecting complex spatiotemporal patterns of parameters

(e.g., vorticity) that might inform our understanding of

tornadogenesis. In other words, are there certain physical

and/or kinematic configurations of supercells that are

associated with tornadogenesis more often than others?

In addition to refining our previous analysis of the

Goshen data (Frank and Galinsky 2016a), we study the

application of the EFD method in a numerically simu-

lated tornadic supercell (Orf et al. 2017), which provides

the opportunity for validating the method. We demon-

strate that our method is both automated and quanti-

tative and provides an analysis approach sensitive to

coherent multivariate features produced by the complex

nonlinear dynamical processes in severe convective

storms. It thus offers the potential to augment current

theoretical, numerical, and experimental studies of tor-

nadogenesis and may ultimately prove suitable for use

with operational weather radar networks deployed in

the service of protecting the public.

2. Overview of EFD

a. General formulation

The primary objective of a wide range of data analysis

problems can be expressed as the desire to estimate

unknown quantities s from the data d using available

prior information I that one might have about the

problem. For imaging systems, the data d may include

complex spatiotemporal dependencies; for example, it

may be a single value (intensity) recorded for every

spatial location, a multiple-value vector or tensor field

data, or a time sequence of values (or a combination of

different types). For example, MDR systems collect

data that are volumetric time series of both reflectivity

intensity and velocity vector measurements. So gener-

ally any single point in such a dataset d is a spatiotem-

poral point—that is, a location in space–time. From

Bayes theorem, the posteriori distribution for any of the

unknowns can be expressed as

p(sjd, I)|fflfflfflfflffl{zfflfflfflfflffl}
Posterior

5
p(d, sjI)
zfflfflfflffl}|fflfflfflffl{Joint probability

p(djI)|fflfflffl{zfflfflffl}
Evidence

5
p(djs, I)
zfflfflfflffl}|fflfflfflffl{Likelihood

p(sjI)
zfflffl}|fflffl{Prior

p(djI) and (1a)
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p(djI)5
ð
ds p(d, sjI). (1b)

The IFT (Enßlin et al. 2009) uses the formalism of field

theory and expresses the terms in Eq. (1a) using an in-

formation Hamiltonian H(d, s) as

H(d, s)52lnp(d, sjI) (Hamiltonian) and (2a)

p(djI)5
ð
ds eH(d,s) 5Z(d) ðPartition functionÞ (2b)

so that the posterior distribution Eq. (1a) becomes

p(sjd, I)5 e2H(d,s)

Z(d)
. (3a)

The formulation of probability theory (i.e., Bayes

theorem) in terms of field theory via Eq. (3a) is useful

because it facilitates the use of all the well-known

mathematical machinery of field theory for describing

arbitrarily complicated approximations of nonlinear and

non-Gaussian interacting fields (e.g., Ryder 1985).

However, from a practical perspective this formulation

provides no guidance on how to work with an arbitrarily

large parameter space and the subsequently huge

number of nonlinear interacting terms that would be

typical of actual data such as that acquired inMDR. The

essence of the EFD approach (Frank and Galinsky

2016a,b) is the recognition that the parameter space of

system configurations that are consistent with the data

can be identified using the ESP theory (Frank and

Galinsky 2014) and that the number of these configura-

tions turns out to be actually quite limited and amenable

to efficient and robust computation. Consequently, even

large, multivariate datasets from complex nonlinear and

non-Gaussian physical systems (such as severe storms or

the human brain) can be described by a reasonable

number of field configurations, or modes, that can char-

acterize the system (Frank and Galinsky 2016a,b).

This identification of consistent parameter configu-

rations occurs as a consequence of the main result of the

ESP theory: A coupling matrix Qij is constructed from

the data that characterize the relation between space–

time locations ji and jj in the data (j [{x, t}), and the

spectrum of the coupling matrix eigenvalues determines

the most probable configuration of parameters, which

are described by the associated eigenvectors. From a

probabilistic standpoint, the coupling can be viewed as

prior information that is contained within the data and

whose spectrum constrains the resulting posterior dis-

tribution of the parameters (Frank and Galinsky 2014).

So how is this coupling matrix constructed? One of

the powerful features of the ESP approach is that the

coupling matrix can be arbitrarily constructed by the

user from the data depending on the problem at hand.

While this choice is arbitrary, its use is not: once the

coupling matrix has been defined, the ESP theory, and

by extension the EFD formalism, then has a precise

method for incorporating it. Consider the simplest case

in which the coupling matrix is constructed assuming

data at space–time points d(ji) only interact if i and j are

nearest neighbors (ji2 jj5 1) and that each neighbor is

chosen to be either completely connected to the data at

space–time location j, in which case Qij 5 1, or com-

pletely unconnected, in which case Qij 5 0. In this spe-

cial case, Qij is then just the adjacency matrix.

But in practical applications, such as the present case,

the coupling matrix Qij is more generally defined in

terms of continuous values derived from some more

complex model of interactions and not necessarily just

between nearest neighbors. For example, one might

consider a velocity vector field v(x) and define the cou-

pling matrix as proportional to the angle between the

vectors [e.g., Qij 5 v(xi) � v(xj)] and then solve the

problem for i and j as nearest neighbors, next-nearest

neighbors, etc., to explore spatiotemporal patterns at

different spatiotemporal scales. In the present paper we

will show that even simple coupling strategies produce

useful results. However, it is anticipated that future

work will involve the inclusion of coupling models based

on more complex models of storm dynamics.

The full details of the mathematical formulation of

EFD can be found in Frank andGalinsky (2016a,b) but a

briefer introduction can be found in the appendix below.

b. Space–time tractography

The general nature of the EFD facilitates further

analysis that has the potential to provide more detailed

information on the nature of dynamic storm processes.

The general EFD framework constructs the modes from

spatiotemporal patterns in parameters that are generally

tensorial in nature. A useful feature of EFD with ten-

sorial parameters is its ability to construct long-range

space–time correlations through the generation of spa-

tially continuous parameter pathways, or tracts, by the

incorporation of our recently developed tractography

method, which employs a geometrical optics approach

guided by ESP (GO-ESP; Galinsky and Frank 2015).

Although this approach was developed in the context of

mapping neural pathways from diffusion-weighted MRI

data, the method actually makes no assumption about

the type of data and can be viewed as a general pro-

cedure for constructing the optimal estimates of the

space–time trajectories traversed by system parameters.

We call this general procedure space–time tractography

and refer to the resulting pathways as space–time tracts.
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These tracts provide additional information about the

detected modes that is not directly apparent from the

modes themselves but is embedded in the estimated

spatiotemporal patterns.

One possible way to implement this general principle

is to define a Hamiltonian H m(x, k) as the averaged

temporal correlation function of the space–time signal

H
m
(x,k)5

1

T

ð ð
s
m
(x, t0)s

m
(x1 k, t0 1 t) dt dt0 , (4)

where sm(x, t) is the mth mode signal and T 5 tn 2 t1.

Then the trajectory is integrated starting from a seed

point to follow the maximum correlation with

dx

dt
5

›H
m

›k
and

dk

dt
52

›H
m

›x
,

(5)

where k is the conjugate variable of the spatial co-

ordinate x (i.e., the momentum). Tracts are then con-

structed from the space–time trajectory of themaximum

correlations. In practice, the computation of H m(x, k)

comes essentially ‘‘for free’’ in that the temporal pair

correlation function is already computed as part of the

EFD processing scheme. From a practical perspective,

the most straightforward implementation of tractog-

raphy is to assume that tracts traverse the high-

probability regions of the parameters estimated using

the EFD procedure outlined above, using the proba-

bility surfaces of the ranked modes as seed points.

Tractography results produce amultitude of pathways

that can be difficult to interpret or categorize in a suc-

cinct fashion. A useful quantitative characterization of

the paths can be constructed from the eigenmodes of the

connectivity matrix generated from all of the starting

and ending points of each tract (Frank and Galinsky

2016a,b). These are called space–time tract eigenmodes

and represent the trajectory of maximum space–time

correlation within a given mode. These eigenmodes can

be ranked according to their associated eigenvalues. The

principal eigenmode is thus the one associated with the

largest eigenvalue and interpreted as the primary, or

most probable, pathway in the data. The significance of

these eigenmodes to the dynamical processes such as

tornadogenesis is an interesting question that will be

explored in future work.

3. Implementation

The general EFD formalism is very flexible and allows

for multiple spatial and temporal correlation orders to

be incorporated and can include a wide range of prior

information. The procedure used in this paper for esti-

mating the signal modes consisted of the following steps:

1) Generate a coupling matrix for data d at the space–

time locations j [{x, t} as Q(ji, jj) 5 d(ji)d(jj)Aij,

where d(ji)d(jj) may represent either the product of

two scalars, or the dot product of vectors or tensors,

and Aij characterizes whether two space–time loca-

tions are connected or not. For example, for simple

nearest neighbor coupling, A is just the space–time

adjacency matrix: Aij equals 1 if i and j are nearest

neighbors in space or time domains and 0 otherwise.

Multiple spatial and temporal scale modes are

generated by extending the space–time correlation

lengths in A.

2) Find ESP eigenvalues lk and eigenvectors f(k) for

the coupling matrix Q(ji, jj) by solving the eigen-

value problem in Eq. (A5).

3) Use ESP eigenvalues lk and eigenvectors f(k) to con-

struct the information Hamiltonian [Eq. (A10)], where

L is simply the diagonalmatrixDiag{l1, . . . , lK} of ESP

eigenvalues and the interaction terms L(n) are con-

structed from ESP eigenvalues and eigenvectors with

the help of Eq. (A12).

4) Finally, the amplitudes ak that describe both spatially

and temporally interacting modes of the information

Hamiltonian [Eq. (A10)] are found from the non-

linear expression for the classical solution [Eq. (A15)].

The procedure above uses a complete spatial–temporal

ESP basis for the signal expansion [Eq. (A9)]. We note

that it is also possible to formulate the ESP method

using a Fourier expansion in the temporal domain. This

approach is useful when the data are densely sampled in

time (Frank and Galinsky 2016b) but is less advanta-

geous for data irregularly and sparsely sampled in time,

such as the DOW data used in this paper. However,

simulation data would be amenable to this formulation.

We anticipate that the Fourier method will be useful in

the future as improvements are made in MDR systems

that facilitate more rapid sampling.

All the algorithms implemented in this paper were writ-

ten in standard ANSI C/C11 and parallelized using

POSIX threads, resulting in an efficient computational im-

plementation. For example, estimation of reflectivity (dBZ)

modes for all 12 combinations of 3 temporal and 4 spatial

scales on the 13-GB simulation data of size (nx, ny, nz, nt)5
(240, 240, 80, 37) took approximately 41 min on a dual

E5-2697 v3 2.6-GHz 14-core 145-W Linux machine with

512 GB DDR4 EEC registered memory. Tractography for

any particular dBZmode took approximately 6 min.

We would like to emphasize that the above imple-

mentation is but one manifestation of the method. Be-

cause the coupling matrix Q can be constructed in a
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variety of ways, and higher-order terms can be included

to incorporate more complex interactions between sig-

nal and noise components, the method provides the

framework to explore a wide range of implementations

presumed suitable in different applications. However,

the key point is that, while the particular implementations

may differ, the logic remains unchanged and is represented

by Bayes theorem [Eq. (3a)] with well-defined parameters

in the construction of the information Hamiltonian [Eq.

(A10)] that must always be explicitly enunciated. In the

results shown in this paper no special processing was per-

formed. Aside from the standard preprocessing to the

DOWdata to remove clutter and regrid to a Cartesian grid

(see, e.g., Wurman et al. 2007a), no additional noise re-

duction, smoothing filters, or other preprocessing steps for

dimensionality reduction were performed. It is particularly

important to note that the spatial and temporal dimensions

are handled in a unified manner as simply different di-

mensions in a general space–time problem. It is also pos-

sible to extend the method to incorporate multiple

modalities of data by generalizing the coupling matrix to

incorporate coupling between the different modalities. For

example, instead of estimating the vorticity EFD modes

just from the measured vorticity field, it is also possible

to estimate them by coupling the vorticity field to the

reflectivity field, if there is a physical model that

suggests a relationship between the two such that the

reflectivity field provides information that can con-

strain the estimates of the vorticity modes. The appli-

cation of this generalization to severe weather data will

be the subject of future work.

In the next sections we detail the application of the

EFD method to a numerically simulated tornadic

supercell (Orf et al. 2017) and to actual MDR data

collected by the DOW team (Wurman et al. 2012;

Kosiba et al. 2013). Meteorological parameters esti-

mated by EFD will have an ‘‘EFD’’ subscript, whereas

the corresponding measured (or simulated) meteoro-

logical parameter will not. For example, the estimated

vertical vorticity will be denoted zEFD whereas the

measured or simulated quantity will be simply z.

The EFD analysis method can be applied to any one

of the multitude of multidimensional parameters that

characterize tornadic supercells. Presently, we focus on

just a few critical parameters: radar reflectivity (dBZ),

vorticity (v), vertical vorticity (z), and the stretching

term in the vertical vorticity equation (s). The vertical

vorticity z 5 k � (=3V) and stretching of z is defined as

s 5 2z[(›u/›x) 1(›y/›y)]. We note that while only the

vertical vorticity z is analyzed for theDOWdata, the full

3D vorticity v is available in the simulation data. We

therefore use these different quantities in the analysis

below. The analysis itself does not change, of course.

4. Application to a simple toy problem

The data from both the numerical simulations and

mobile Doppler radar are exceedingly complex and so it

is useful to demonstrate the EFD on a much simpler

problem. This will help clarify the differences, and

advantages, of EFD over more traditional analysis

methods such as contouring. For this purpose we have

constructed a simple toy model that consists of a modi-

fied form of a 3D vortex tube generated with a modified

version of Burgers’s vortex (Burgers 1948) (i.e., char-

acterized by a Gaussian vorticity profile) in which the

center line of the vortex tube is described by an arbitrary

curve in space and time. The Burgers’s vortex is an exact

solution to the Navier–Stokes equations for viscous flow

that is easily solved for a straight tube that admits a

simple solution when expressed in cylindrical co-

ordinates (e.g., Tryggeson 2007). However, the solution

along an arbitrary curve is nontrivial (we are not aware

that this has been solved) so, strictly speaking, our

construction assumes that the curve bends slowly

enough (in space) that Burgers’s vortex solution is valid

locally (i.e., short lengths of the tube are considered

straight cylinders.). Nevertheless, it produces a time-

varying tube of Gaussian vorticity (across the tube) that

provides a useful model for constructing, testing, and

comparing analysis algorithms.

Two Burgers’s vortex tubes with identical vorticity

profiles across the tube (in the reference frame of the

tube) but different sizes and distances from the origin

were constructed along helical trajectories in the vertical

(z) axis. The tubes were then made to rotate about

both a common origin in the x–y plane and about their

core axis. Ten time steps were simulated during which

time the tubes made one complete rotation about the

origin. The data generated in the toy simulation are

shown in Fig. 1 (top) where contours of vorticity mag-

nitude are shown. Being of equal vorticity magnitudes,

both tubes show up in the same contour plot. One can

think of them as being in the same ‘‘contour mode.’’ The

results of the EFD processing are shown in bottom of

Fig. 1. Two EFD modes are detected (colored in blue

and red) corresponding to two separate spatiotemporal

patterns. These modes are just the two different vortex

tubes. So, while the tubes appear together in a contour

plot, they are distinguishable by EFD (i.e., appear as

different EFD modes) because they do, in fact, have

different spatiotemporal structure.

Another aspect of the EFD method is important to

point out here. The EFD modes represent probabilities

and therefore the displayed surfaces such as those shown

in Fig. 1 (bottom) represent surfaces of constant prob-

ability. Therefore the numerical values associated with
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these surfaces are not the values of the parameters being

estimated. By construction, the eigenvectors in the EFD

formulation from which these modes are constructed

(appendix) are of unit magnitude. Multiplication of the

eigenvectors by their associated eigenvalue scales them

into the same units as the parameter (e.g., vorticity) but

that does not guarantee that the value at a particular lo-

cation in themode is the same as the corresponding value

in the data (and it typically is not). The reason for this is

that the eigenmodes are constructed from a mixture of

interacting fields in both space and time.However, once a

mode is constructed, one can always extract (or display)

the parameter values within the high-probability regions

of the EFD modes.

This toy problem is admittedly simplistic from a me-

teorological standpoint but serves to illustrate the

meaning of the EFD modes and their fundamental dif-

ference from contour plotting.

5. Application to a numerically simulated tornadic
supercell

Numerical simulations provide an excellent test bed

for the validation of computational estimation methods,

as the parameter fields are precisely known. However,

modern simulations are themselves so complex that the

resultant numerically generated storms are well served

by estimation techniques such as EFD in order to

identify important complex dynamical features.

a. Simulation details

The simulation analyzed was a low-resolution (500-m

horizontal and 250-m vertical grid spacing) version of

the tornadic supercell described in Orf et al. (2017).

This simulation will be referred to as ER500. The

sounding used to initialize the CM1 model, release 18

(Bryan and Fritsch 2002), was taken from a 1-h Rapid

Update Cycle (RUC) model forecast off the right flank

of the storm that was observed to produce the

Calumet–El Reno–Piedmont–Guthrie tornado of 24

May 2011 [for a description of the observed storm, refer

to Tanamachi et al. (2015), Houser et al. (2015), and

French et al. (2015)]. The base-state environment of

the simulation was characterized by large amounts of

convective available potential energy, large amounts of

deep-layer and near-surface vertical wind shear, a low

lifted condensation level, and storm-relative helicity

values associated with strongly tornadic supercell

thunderstorms (Thompson et al. 2003). For a full de-

scription of the environmental conditions that initial-

ized CM1, see Orf et al. (2017). Gross features of the

500-m simulation analyzed herein are consistent with

those observed in Orf et al. (2017), including a vigorous

low-level mesocyclone and tornado-like vortex (TLV)

that persists for over one-half hour, producing ground-

relative winds exceeding 60 m s21 at the model’s lowest

grid level, consistent with an EF3 tornado. Further, a

feature found just behind the forward-flank downdraft

boundary (FFDB), consistent with the streamwise

vorticity current (SVC; Orf et al. 2017) is present dur-

ing the period where the lowest surface pressure

(233 hPa) associated with the tornado-like vortex are

found. Thirty-seven model times were saved to history

files in 300-s intervals spanning 3 h of model time, and

EFD analysis covered all saved times. This is rather

coarse sampling for supercells but sufficient to resolve

the developing tornado-like vortex. Future studies

focused more on the specific mechanisms of torna-

dogenesis will utilize much higher spatial and tem-

poral resolution simulation data in which much finer

spatiotemporal features are evident.

FIG. 1. Toy problem. (a) Two helical Burgers vortex tubes with

the same vorticity rotating about a common origin in the x–y plane.

A single time frame of the 10 time steps in the data is shown.

Contours of vorticity magnitude in the data show both tubes si-

multaneously. (b) EFD analysis of the data detects two different

spatiotemporal modes corresponding to the two different vortex

tubes. One mode contains only one tube (red) rotating around the

center. The second mode contains the other tube (blue) rotating

around the center. This image shows the combined mode at the

same time point.
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b. EFD analysis

In Fig. 2, we compare traditional contour analysis of

the reflectivity field of ER500 to EFD estimated modes

at three different model times. At t5 4500 s a plan view

of simulated reflectivity at 2 km AGL (not shown) in-

dicates the primary (cyclonic) supercell exhibiting a

classic reflectivity signature with reflectivity maxima in

the storm’s forward flank and a hook echo and weak-

echo region. The remnants of a left-moving cell are ex-

iting themodel domain’s northern boundary at this time,

and a region of enhanced reflectivity (;400-km2 region

exhibiting values exceeding 50dBZ) persists until t 5
7500 s. The quantity dBZEFD(1, 1) cleanly captures each

of the aforementioned physical features, whereas mode

dBZEFD(2, 2) presents a more complex picture, with the

new EFD modes covering a larger volume and exhibit-

ing secondary features not found in dBZEFD(1, 1).

In Fig. 3, we explore vertical vorticity stretching,

with six model data contours spanning the range

[21, 1]3 1023 s22 shown in the top row. Focusing on the

region in the vicinity of the TLV near the ground, con-

tours indicate a structure with large positive values of

stretching maximized immediately above the ground

beneath an elevated tube-like region of negative vor-

ticity stretching where minimum values are found ap-

proximately 4 km AGL. An exploration of the updraft

and vertical vorticity in this region reveals a vigorous

low-level mesocyclone with a local updraft maximum

centered approximately 3 km AGL. The dipole-like

structure of the stretching field can be explained by

approximating the cyclonically rotating updraft as an

ellipsoid with an updraft maximum at its center, with neg-

ative stretching values above the center of the ellipsoid

(where ›w/›z is negative) above a region of positive

stretching (where ›w/›z is positive).EFDmodessEFD(1, 1)

FIG. 2. ER500 analysis of radar reflectivity at three different model times: (left to right) 4500, 6000, and 7500 s. (top) Five equally

spaced semitransparent contours of model-calculated reflectivity in the range {0, 60} dBZ. (middle),(bottom) The dBZEFD modes for

(nx, nt)5 (1, 1) and (nx, nt)5 (2, 2) , respectively, at the same times as in the (top). For the dBZEFD modes, five contours from 0 to the

mode maximum value are shown. EFD contours are shaded by model reflectivity along the contour surface. View is looking toward

the north, and the surface pseudocolor field is the maximum surface horizontal wind speed translated with the moving model domain.

The dark blue linear feature traces the ground-relative surface path of the TLV. Tick marks are every 4 km. Axes are marked in

kilometers.
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capture the vigorous (positive) stretching associated

with the TLV, whereas EFD modes sEFD(2, 2) capture

the elevated region of negative stretching. In this case,

the second EFD mode is not associated with tornado-

genesis or tornado maintenance but, rather, identifies a

persistent region within the updraft where the stretching

term is consistently negative.

In Fig. 4, we explore vorticity magnitude. Contoured

model data reveal large local values of vorticity magni-

tude throughout the depth of the TLV as would be ex-

pected but, also, an enhanced region of vorticity

magnitude along and behind the storm’s FFDB, roughly

consistent with the location of the streamwise vorticity

current in Orf et al. (2017). In this case, both EFD

analysis modes tell a similar story, keying in on both the

vorticity found in the TLV as well as the region of vor-

ticity along the FFDB. The EFD modes, however, do

not focus on the more transient and less organized vor-

ticity regions aloft, including some with similar magni-

tudes of vorticity.

In Fig. 5, we focus on the vorticity magnitude tracts in

ER500 at three different model times and the tracts

generated fromvEFD(1, 1) analysis at these times.While

interpretation of these tracts is difficult owing to the

sheer number of pathways found, some general state-

ments can be made. In all three EFD analyses, a bundle

of tracts is found throughout the depth of the mesocy-

clone with a large concentration of tracts connected to

the bottom and top of this bundle, primarily in the di-

rection of the storm’s forward flank. The top view reveals a

consistent broad swath of tracts primarily spanning the

storm’s forward flank, with more variability in tracts den-

sity in the rear flank. The view looking southwest reveals a

bundle of tracts along and slightly behind the FFDB, col-

located with the region of enhanced (horizontal) vorticity

indicated in Fig. 4 that is located where the SVC is found

in Orf et al. (2017). Regions of increased tract density

correspond to particularly spatially and temporally

coherent vorticity structures and thus would be ex-

pected to be of importance in the development and

maintenance of features such as tornado-like vortices.

The validity of this hypothesis will be explored in

future work.

In Fig. 6, vorticity magnitude and EFD analysis of

vorticity magnitude at t 5 6000 s is displayed, focusing

on the region of the simulated storm’s low-level meso-

cyclone. The top panel contains two semitransparent

contours of vorticity magnitude showing the erect por-

tion of rotation directly above the location of strongest

surface horizontal winds associated with the TLV. The

small extension of (primarily horizontal) vorticity along

the forward flank of the storm is also apparent and is

roughly collocated where the SVC was found in Orf

et al. (2017). An vEFD(1, 1) analysis of vorticity cap-

tures these features, and the tract’s figure reveals a

set of pathways along and slightly behind the FFDB, in

FIG. 3. As in Fig. 2, but analyzing vertical vorticity stretching. Yellowish green indicates positive stretching; red indicates negative

stretching. (top) For the data, the contours were s5 {21,20.6,20.3, 0.3, 0.6, 1}3 1023 s22. (bottom) For the sEFD estimates, five equally

spaced contours in the range {0.02, 0.1}3 1023 s22 were used for sEFD(1, 1), which is the positive stretching mode (yellowish green), and

five equally spaced contours in the range {20.1,20.02} 3 1023 s22 were used or sEFD(2, 2), which is the negative stretching mode (red).

Mode surfaces are colored bymode values on the surface scaled by themode eigenvalue and therefore in s units. View is toward the north.

716 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 75

Unauthenticated | Downloaded 02/01/24 08:45 PM UTC



addition to denser regions of elevated tracts that extend

into the environment primarily to the east of the storm.

It should be reinforced that this analysis of ER500

is cursory and our main goal here is to validate the

EFD approach on a modeled storm in a previously

studied environment that contains a persistent vig-

orous mesocyclone/TLV. ER500 resolution is in-

sufficient to capture many if not most of the features

described in Orf et al. (2017) and the fact that EFD

analysis is capturing apparently salient features at

this resolution is encouraging and will set the stage

for future analysis of data at much higher spatial and

temporal resolution.

The different spatial and temporal scales reveal dif-

ferent spatial–temporal patterns of the evolving vortic-

ity field and the associated vorticity tracts. These results

are achieved by extending the coupling length in space

and time, respectively, to higher orders. In practice, our

implementation allows an arbitrary number of spatial

coupling levels ns and temporal coupling levels nt and all

combinations of the two in order to produce an ns 3 nt
matrix of resultant EFD time series at different spatial

and temporal mixtures of scales. For purpose of the current

paper, we have only the diagonal elements of this matrix,

where both spatial and temporal correlations lengths are

incremented in step.

6. Application to DOWmobile Doppler radar data

a. Data collection and preprocessing

Data analyzed in this study were obtained by DOW

(Wurman et al. 1997) MDRs during VORTEX2

(Wurman et al. 2012; Kosiba et al. 2013) in a storm

producing a tornado in Goshen County, Wyoming, on

5 June 2009. DOW6 and DOW7 collected synchronized

volumes comprising 12 elevation angles (0.58–168) every
2 min. Edited radar data (ground clutter was removed

and aliased velocities were dealiased) were objectively

analyzed to a 40 km 3 40 km 3 10 km Cartesian grid

having a 0.25-km grid spacing using the two-pass Barnes

successive corrections method (Majcen et al. 2008). The

amount of smoothing was determined by a conservative

estimate of the data spacing d in the region of the storm

that was scanned [see Markowski et al. (2012a) for more

FIG. 4. As in Fig. 2, but analyzing vorticity magnitude jvj. Five contours equally spaced in the range {0, 0.15} s21 were plotted for the

data. ThevEFDmodes are scaled by themode eigenvalue and therefore in vorticity units. Five contours in the range {0, 0.15} s21 are shown.

View is toward the north. Surface shading is as in v units.
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details]. Data fields of radar reflectivity and Doppler

velocity were interpolated onto 17 three-dimensional

Cartesian grids covering 12-min periods from 2142 to

2214 UTC, and dual-Doppler techniques were em-

ployed to calculate the orthogonal components of the

wind (north–south, east–west, and upward–downward),

as described in Kosiba et al. (2013).

b. EFD analysis

Figure 7 and Fig. 8 contain contours of objectively

analyzed DOW data from the Goshen supercell at 2148,

2156, and 2204 UTC (top row) as well as multiple EFD

analyses modes. These times cover the period where

rapid intensification of low-level rotation and tornado-

genesis was observed (Markowski et al. 2012b; Kosiba

et al. 2013). A cursory analysis of EFDdata suggests that

mode dBZEFD(1, 1) most faithfully captures the pre-

viously documented salient reflectivity characteristics of

the observed storm, indicating a clearly defined weak-

echo region and hook echo with associated reflectivity

maxima extending throughout the depth of the observed

storm and a broad region of reflectivity with associated

FIG. 5. ER500 EFD analysis showing vorticity tracts (red tubes) and reflectivity EFD isosurfaces (displayed as in Fig. 2) at three

different times—(left to right) 4500, 6000, and 7500 s—from three different views: (top) from the top down, (middle) looking south, and

(bottom) looking northeast. Surface shading is as in Fig. 2.
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maxima throughout the storm’s forward flank, as well

as a low-reflectivity ribbon (LRR) (Wurman et al. 2012).

The quantity dBZEFD(2, 2) analysis presents a notably

different reflectivity pattern more representative of the

outer portion of the tip of the hook echo, extrusions to

the east and north, and a relative minimum extending

northeastward of the hook. The quantity dBZEFD(3, 3)

presents an even more prominent larger-scale local cir-

culation about the edge of the hook tip that appears

highly spatially correlated with the leading and rear

edges of the storm. From the perspective of EFD, these

results represent larger spatial and temporal variations,

such as the circulation around the edge of the hook tip

that then extend from the hook tip out to the rear and

forward flanks of the storm. Generally, these differences

between the modes demonstrate that reflectivity pat-

terns along the edges of the supercell are more consis-

tent across longer distances and times, while the storms’

cores (updraft and points downshear) exhibit a higher

degree of short-wave, short-duration spatiotemporal

variability. We speculate that this is due to short-

duration physical processes such as updraft pulsing and

hail fallout events. Understanding the precise physical

mechanisms underlaying EFD-detected features will

require more in-depth analysis of observational and

simulation data.

Figures 9 and 10 include contours of vertical vorticity

stretching (s) and vertical vorticity (z) at the same times

as shown in the previous figures. As this period of the

storm covered intensification of low-level rotation, tor-

nadogenesis, and tornado intensification, one would

expect to see enhanced s followed by rapidly growing z.

EFD analysis of these fields captures these processes,

with sEFD contours prominent at 2156 and 2204 UTC,

corresponding to a column of s shown in the DOW data

contours. As in the simulation data, the dipole structure

of negative and positive stretching are clearly evident in

the estimated EFD modes. The z fields show a similar

pattern with somewhat disorganized rotation indicated

at 2148 UTC, leading to a vertical column of contours at

2156 UTC and an erect, strong region of zEFD at 2204

UTC, also clearly present in the DOW z contours. EFD

analysis automatically captures salient processes of in-

terest to tornadogenesis while ignoring much of the re-

maining noisy data shown many kilometers away from

the tornado as evidenced by comparing the top rows of

Figs. 9 and 10 to the EFD contours below.

In Fig. 11, z tracts are calculated for three time frames

of DOW data and shown from three different views.

One must be careful when comparing vertical vorticity

DOW tracts to the total vorticity ER500 tracts in Fig. 5.

In addition, unlike the simulation data, the DOW data

are incomplete or nonexistent near the ground (the

lowest scan height is ’200–300 m) so vorticity tracts

running parallel to the surface at low levels will not be

detected. EFD analyses over time reveal a dense column

of vertically oriented tracts that extend from the ground

upward, roughly collocated with the reflectivity maxi-

mum at the tip of the hook echo, adjacent to the de-

veloping tornado, as well as additional tract clusters

extending into the rear and forward flanks of the storm.

Note that at t5 2158UTC (and other frames not shown)

there are apparently near-ground looping vortex tracts,

consistent with the ‘‘vortex arches’’ that have been de-

tected by traditional means (e.g., Markowski et al.

2012a; Kosiba et al. 2013).

FIG. 6. ER500 simulation data analysis. (a) A single time frame

from Fig. 4 of the vorticity magnitude jvj in the data to (b) the first

EFDmode estimated jvjEFD, where the orange arrow points to the

‘‘foot’’ in the local vorticity profile, and (c) the vorticity tracts

generated from the first EFD vorticity mode, where the yellow

arrow indicates the location of a feature in the model data that

suggests a marginally resolved streamwise vorticity current, which

overlaps with a bundle of tracts that follow along and behind the

storm’s forward-flank downdraft boundary. The view is from the

north looking along the leading edge of the storm. Surface shading

is as in Fig. 4.

MARCH 2018 FRANK ET AL . 719

Unauthenticated | Downloaded 02/01/24 08:45 PM UTC



All of the parameter estimate volumes can be com-

bined, of course, which is essential for understanding the

complete dynamics of the evolving fields. For example, a

localized and coherent feature of interest identified and

previously documented in the dBZ field in these data as

the DRC (Markowski et al. 2012b; Kosiba et al. 2013) is

evident in dBZEFD(1, 1), as seen in the highlighted view

of Fig. 7 shown in Fig. 12 where it is combined with the

first EFD mode for vertical vorticity zEFD(1, 1).

Overall, these figures demonstrate that spatially and

temporally coherent patterns are revealed objectively

using EFD, as opposed to being revealed subjectively

through expert analysis and evaluation as is now stan-

dard. The ability of EFD to automatically detect spa-

tially and temporally coherent features in the data

provides a unique capability that can augment tradi-

tional multiple-Doppler techniques.

Current analysis approaches, such as in Kosiba et al.

(2013), typically involve the subjective editing of these

contour lines, which is not only time consuming, but

necessarily dependent upon the skill (and biases) of the

individual doing the analysis. The EFDmethod provides

an automated, objective approach for detecting complex

spatiotemporal features of the storm structure. While

diagnosing and evaluating how these detected phe-

nomena are associated with tornadogenesis using EFD

is a topic for future work, it is clear that EFD offers the

potential for enhancing these types of analysis.

The ability of EFD to detect features at different

spatial and temporal scales, such as is evident in the

estimated fields dBZEFD, sEFD, and zEFD, and the as-

sociated vorticity lines, is an important feature that we

anticipate will provide insight into storm structure and

evolution in future work on these scale-dependent pa-

rameter estimates.

7. Discussion and conclusions

Many physical systems exhibit highly nonlinear and

non-Gaussian characteristics, and this is certainly true of

severe storms (e.g., Bluestein 2007). As detection sys-

tems such as MDR attain finer spatial and temporal

FIG. 7. DOW data analysis. A comparison of dBZ contours (top) in the data at three times—(left to right) 2148, 2156, and 2204 UTC—

with (middle),(bottom) the two estimated EFD dBZEFD modes: (nx, nt)5 (1, 1) and (nx, nt)5 (2, 2) at the same times. Six equally spaced

contours in the range {0, 66} dBZ were plotted for the data. For the dBZEFD modes, five equally spaced contours from 0 to the mode

maximum value are shown. The coloring is the data dBZ on the contour surface locations.
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FIG. 8. DOW data analysis. A comparison of dBZ contours (top) in the data at three times—(left to right) 2148, 2156, and 2204 UTC—

with (bottom three rows) the estimated EFD dBZEFD modes at three different spatial–temporal scales: nearest neighbor (nx, nt)5 (1, 1),

fourth-order neighbor (nx, nt)5 (2, 2), and eighth-order neighbor (nx, nt)5 (3, 3). The view is from the top from which the characteristic

‘‘hook’’ is visible. The bottom of the each plot is south and the top is north. Ten contours equally spaced in the range {0, 66} dBZ were

plotted for the data. For the EFDmodes, 10 equally spaced contours are plotted from 0 to the modemaximum. Coloring is by mode value

on the surface.
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resolution, these features become more evident in the

data. It is often not appreciated that simple contouring

of parametric surfaces is implicitly a linear estima-

tion method. While the underlying surface may have

been generated by highly nonlinear processes, the

process of contouring implicitly assumes a linear

relationship between the contour value(s) and the

associated parameter surface. Accurately estimating

parameters from such systems therefore requires anal-

ysis methods capable of incorporating nonlinear and

non-Gaussian behavior. Unfortunately, in many areas of

scientific research where quantitative measures of dy-

namical processes are of interest the use of ‘‘traditional’’

analysis methods that are predicated on linear and

Gaussian models can be insufficient for more complex

systems. This is the case, for example, with principal

components analysis (PCA), often called empirical or-

thogonal functions (EOF) in meteorological applica-

tions (Lorenz 1956; Obukhov 1947, 1960; Craddock

1973), which relies on the first and second moments of

the data to minimize the covariance of the estimates,

thereby implicitly assuming Gaussianity of the data, in

addition to linearity. Methods have been developed to

attempt to analyze nonlinear and non-Gaussian systems,

the most popular being independent components anal-

ysis (ICA) (Bell and Sejnowski 1995; Comon 1994;

McKeown et al. 1998; Beckmann and Smith 2004).

However, this procedure is, in our view, rather ad hoc, as

we have detailed elsewhere (Frank and Galinsky

2016b). Our approach, the entropy field decomposition

(EFD) (Frank and Galinsky 2016a,b), is developed di-

rectly from within the logical framework of probability

theory which has no implicit constraints on anything

other than logical consistency. Expressing the general

statement of Bayes’s theorem [Eq. (1a)] in the language

of field theory [Eq. (3a)] facilitates the construction of

probabilities in terms of nonlinear and non-Gaussian

components, at the expense of a very large parameter

space. But the inclusion of prior information (via the

prior probability density in Bayes’s theorem) of the

coupling structure within the data itself helps solve this

dimensionality problem by the theory of entropy spec-

trum pathways (ESP) (Frank and Galinsky 2014), which

extracts only the most relevant parameter configura-

tions thereby reducing the computational problem to

dimensions easily determined numerically.

In the context of DOW and other MDR data, EFD

analysis provides a new formalism for the estimation of

nonlinear spatiotemporal coherences in the data not

attainable from simply contouring of parameter sur-

faces. The formalism is based on a Bayesian framework

and thus is conservative in the sense that it derives es-

timates based on required consistency with prior in-

formation within the data. Thus, while contouring

remains a valuable technique for depicting the evolution

of parametric fields, it is not a rigorous formalism for

FIG. 9. DOW data analysis. A comparison of s contours (top) in the data at three different times—(left to right) 2148, 2156, and 2204

UTC—with (bottom) two estimated EFD sEFD modes: (nx, nt)5 (1, 1) computed separately for both positive and negative stretching in

the data. For the data, contours weres5 {265,245,225,25, 5, 25, 45, 65}3 1024 s22. ThesEFDmodes are scaled by themode eigenvalue

and therefore are in s units. For both positive (yellowish green) and negative (red) stretching modes sEFD(1, 1) five equally log-spaced

contours in the range {0.01, 3} were used.

722 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 75

Unauthenticated | Downloaded 02/01/24 08:45 PM UTC



detecting coherent nonlinear and non-Gaussian pro-

cesses. This capability of EFD thus provides unique

capabilities that can augment traditional contour

analysis.

We present an example of where EFD analysis resolves

an evolving feature in the velocity field, stretching of ver-

tical vorticity, perhaps better and/or earlier than traditional

dual-Doppler analysis. The approach allows us to define

coupling in terms of parameters resulting from the standard

objective analysis, giving a flexibility to use scalar or vector

(or even multiscale tensor) coupling. Using the general

analysis outlined in Frank and Galinsky (2016b,a), this

produces rankedmodes of the storm that reveal clearly the

spatiotemporal modes of the critical variables in tornado-

genesis such as vertical vorticity stretching and vertical

vorticity. The generation and intensification of low-level

rotation is clearly indicated in themajormodes detected by

EFD and appears to be consistent with recent theories fo-

cusing on the role of the descending reflectivity core

(Markowski et al. 2012a,b; Kosiba et al. 2013). This core,

and the convergence, intensification, and coalescence of the

vertical vorticity as mediated by the vertical vorticity

stretching, are automatically detected and quantified

by our method, illustrating how the technique can pro-

vide new insight into the quantitative dynamics of

tornadogenesis.

Overall the EFD approach combines both local and

multiscale nonlocal properties of the underlying field in a

rigorous way. These properties can include boundary

conditions, conditions on internal interfaces (if any), short-

and long-range spatial and temporal correlations between

various scalar, and vector or tensorial parameters. This

unique ability of EFD to detect patterns in highly multi-

variate data through simultaneous processing of many

pieces of information allows detection of subtle features or

localizations that would otherwise be missed by the con-

ventional analyses that assume linearity and Gaussianity.

One of the interesting, but also perhaps the most

confusing, aspects of the EFD method is its ability to

create modes with sensitivity to multiple spatial and

temporal scales. This results in multiple modes that

uncover complex and subtle spatiotemporal patterns not

FIG. 10. DOWdata analysis.A comparison of vertical vorticity contours (top) in the data at three different times—(left to right) 2148, 2156,

and 2204 UTC—with (middle),(bottom) two estimated zEFD modes: (nx, nt) 5 (1, 1) and (nx, nt) 5 (2, 2) at the same time points. View is

looking toward the northwest. Five contours equally spaced in the range z 5 {0, 0.045} s21 were plotted for the data. The zEFD modes are

scaled by the mode eigenvalue and therefore in z units. Six equally spaced contours in the range jvj 5 {0, 0.045} s21 values are shown.
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always detected by traditional means. The result can be

patterns that are unfamiliar from analysis results using

traditionalmethods. This is most certainly the case in the

EFD dBZ modes detected in the DOW data (Fig. 8),

where the dBZEFD(1, 1) mode represents the typical

hook-echo structure but the higher-order modes

[dBZEFD(2, 2) and dBZEFD(3, 3)] show highly coherent

features different from dBZEFD(1, 1) (as they should)

related to larger-scale spatiotemporal processes and

thus do not have the same appearance as the standard

hook-echo reflectivity structure. It is worth noting that a

similar situation exists in the application of the EFD to

brain imaging data (Frank andGalinsky 2016b), where it

uncovered patterns of brain activity not observed with

traditional techniques incapable of detecting more

subtle nonlinear phenomena. These spatiotemporal

patterns do exist in the data because we know EFD

works, but what these new patterns ‘‘mean’’ is a question

for neuroscientists. Similarly, we can attest to the robust

nature of EFD method to the meteorological data ana-

lyzed in this paper, but the ‘‘meaning’’ of the findings is

necessarily the subject of future work.

FIG. 11. DOW EFD analysis showing vorticity tracts (red tubes) and reflectivity EFD isosurfaces (displayed as in Fig. 2) at three

different times—(left to right) 2148, 2156, and 2204 UTC—from three different views: (top) from the top down, (middle) looking

northwest, and (bottom) looking northeast. Arrows at t 5 2158 UTC indicate vortex arches.
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The EFD estimation of the modes of vertical vorticity

stretching s (Fig. 3 and Fig. 9) presents an interesting

example. Though fully aware that positive stretching

(s1) is generally of most interest in the study of torna-

dogenesis, as it is a critical dynamical feature that en-

hances vertical vorticity, we chose to also display the

negative stretching (s2) because it is a related dynam-

ical feature that EFD detects since it appears as a strong

couplet with s1 near the TLV. This is a clear demon-

stration that EFD can estimate distinct complex dy-

namical spatiotemporal features.

The EFD estimation of s also brings to the forefront

an important general issue in MDR analysis. In the

simulation results there is high spatial and temporal

resolution data with effectively infinite SNR and no

missing data points. In this case, the EFD analysis re-

sulted in a clear separation of s1 in mode sEFD(1, 1) and

s2 in mode sEFD(2, 2) (Fig. 3). But DOW MDR data

are, of course, subject to numerous observational re-

alities that can result in noisy ormissing data and require

significant preprocessing before it can be subject to

analysis (see, e.g., Wurman et al. 2007a). The EFD al-

gorithm implemented in this paper is careful about

identifying bad or missing data points and thus makes

the best estimates of the modes even in the presence of

realistic imperfections in the data. Moreover, the com-

putation of the s field from the raw data requires

not only estimation of the vertical wind profile but

the notoriously noise-sensitive calculation of derivatives

(e.g., Wurman et al. 2007a). The resulting s field in the

data was quite noisy and so we choose to estimate s1
EFD

from only the positive stretch component of the data (s1)

and s2
EFD from only the negative stretch component of the

data (s2). Nevertheless, EFD was able to clearly distin-

guish the s couplet, though in this case each appeared as

the first EFD mode [i.e., s1
EFD(1, 1) and s2

EFD (1, 1)] in

the separate analyses.

There is perhaps an important lesson in this example

that has a precedent in the analysis of FMRI data, for

which the EFD analysis was initially developed. Initially

the focus in FMRI was on general linear models that

assumed Gaussian noise (Poline and Brett 2012).

However, it was in part the failure (or, at least, the

nonoptimality) of this approach that led to the recog-

nition that the most important noise sources were non-

Gaussian, being physiological in nature (e.g., Frank et al.

2001), and thus required a more general formalism (e.g.,

Frank et al. 1998) that could ultimately be used to in-

corporate more complex realistic noise sources (e.g.,

Woolrich et al. 2004). The lesson is that having a logi-

cally consistent formalism for the analysis of complex

nonlinear processes is critical not only in detecting what

one expects but also what may not be expected. Simple

contouring of derived quantities will not provide this

type of information. The EFD formalism does not re-

quire any assumptions about the structure of the dy-

namical processes or the noise and can incorporate

models of either. This suggests that a potentially fruitful

area of future work will be to integrate the estimation of

the wind fields themselves directly into the EFD esti-

mation scheme, thereby taking into account all that is

known about the radar systems, the ground clutter, etc.,

that contribute to inaccuracies in the estimates of the

quantities of interest, such as s.

While the EFD method presented in this paper has a

broad range of application, our particular interest is in

the development and maintenance of tornadoes, par-

ticularly those that are long track and violent. Un-

derstanding the mechanisms of tornado formation has

long been a focus of severe weather research (e.g.,

Davies-Jones et al. 2001; Beck et al. 2006; Markowski

andRichardson 2009;Markowski et al. 2012a,b;Marquis

et al. 2008, 2012;Wurman andKosiba 2013; Kosiba et al.

2013; Marquis et al. 2014). In addition to its basic sci-

entific importance, the obvious major benefit of the ca-

pability of deriving tornadic signatures objectively and

automatically in real data is the possibility that they may

be used to forecast events in near–real time and be used

to enhance public warning systems. However, the com-

plexity of the evolution of the wind and precipitation

fields in pretornadic and tornadic storms currently

precludes a satisfactory analytical approach and, while

numerical simulations are promising (e.g., Wicker and

FIG. 12. DOW data analysis. Highlighted view of Fig. 7 showing

three dBZEFD(1, 1) contours from 0.5 max[dBZEFD(1, 1)] to max

[dBZEFD(1, 1)] in cyan at t 5 2148 UTC along with zEFD(1, 1)

contours in magenta from Fig. 10. For clarity, only parameter esti-

mates within a box bounded by {xmin, xmax, ymin, ymax, zmin, zmax} 5
{220, 215, 16, 22, 0, 4} km are shown. The dBZEFD contours are

consistent with the DRC described in Markowski et al. (2012b,

their Fig. 20d). The view is looking northwest.
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Wilhelmson 1995; Markowski et al. 2003; Markowski

and Richardson 2014; Orf et al. 2017), currently they

remain limited in their ability to simulate tornadic

events. The analysis of observational data therefore

remains a primary source of information regarding tor-

nadogenesis. Traditional multiple-Doppler analyses of

severe storms (e.g., Kosiba et al. 2013; Markowski et al.

2012a) necessarily employ expert analysis of sub-

jectively detected/identified features, contour intervals,

and choices of vortex lines and trajectories owing to the

complexity of the evolving vorticity fields.

One approach is to calculate backward trajectories by

choosing a region of interest and integrating backward

in time to determine where the parcels of air in this re-

gion originated. However, this approach has been shown

to be susceptible to significant numerical errors (Dahl

et al. 2012). Alternatively, forward integration whereby

wind fields are integrated forward in time then choosing

the parcels that pass through the region of interest is

much more stable (Coffer and Parker 2017). Compari-

son of traditional Lagrangian vorticity budget analysis

with our trajectory method remains an interesting

question for future work. In particular, what is the re-

lationship between vorticity tracts and regions where

generated vorticity is tilted and stretched to produce

tornadoes?

There are other potential uses for the EFD algorithm.

Analysis of velocity observations from a single Doppler

radar presents a significant challenge. Although beyond

the scope of the present study, the robustness of EFD for

single-Doppler analysis of mesocyclones and tornadoes

could potentially be tested through data denial experi-

ments. This would allow a test of the robustness of the

EFD estimation with single-radar data by comparing,

for example, the estimated vorticity fields and tracts

generated with a single radar and with both radars.

While the current paper focuses on MDR data in severe

local storms, the EFD algorithm is appropriate for radar

data collected at much larger scale and would be useful

for the detection of modes in mesoscale radar data, such

as from the NEXRAD WSR-88D system.

While MDR such as those used in this study have the

advantage over operational radar systems because of

their low-level sampling and higher spatial resolution,

this comes at the cost of a significant amount of neces-

sary preprocessing including noise removal, synchroni-

zation of the dual-Doppler measurements, and other

editing and censoring of raw data. However, the EFD

approach is very general and can be used with a wide

variety of data. Of particular relevance to operational

radar systems would be the analysis of single-Doppler

measurements and the estimates of DV or azimuthal

shear, for example.

There are certainly a much broader range of param-

eters that are influential in tornadogenesis than have

been discussed in the present paper that will ultimately

need to be included in future analysis in order to

develop a more complete picture of the dynamics of

tornadogenesis and the maintenance of strong, long-

lived tornadoes. From a long-term perspective, it is our

belief that the application of EFD to severe weather

prediction using radar data offers the possibility of an

analysis system capable of being used in conjunction

with operational weather radar instrumentation to de-

velop more automated early-warning systems. Since

these techniques are automated, not requiring time-

intensive scientific analysis, these may provide a path

toward more timely tornado and other severe weather

warnings.

We also note that the current paper computes the

EFD modes from complete (in time) datasets. How-

ever, the theoretical formulation of EFD (Frank and

Galinsky 2016a,b) is Bayesian and easily facilitates

the prediction of the current ‘‘state’’ of a physical

system as more information is gathered. Thus it is

natural to consider its application to problems of data

assimilation (e.g., Snyder and Zhang 2003; Marquis

et al. 2014), which are ubiquitous in a multitude of

meteorological problems, and will be considered in

future work.
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APPENDIX

EFD Summary

The data {d(xj, ti)} are assumed to consist of n mea-

surements in time ti, i5 1, . . . , n atN spatial locations xj,

j5 1, . . . , N [or equivalently {d(jl)}, where jl, l5 1, . . . ,

nN defines a set of space–time locations]. The spatial

locations are assumed to be arranged on a Cartesian grid

and the sampling times are assumed to be equally
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spaced. Neither of these is required in what follows, but

merely simplify and clarify the analysis. For most appli-

cations inwhich we are interested, the data d are assumed

to be four dimensional, comprising temporal variations in

the signal from a volumetric (three spatial dimensions)

imaging experiment. Each datum is of the form

d(x
j
, t

i
)5 R̂s(x

j
, t

i
)1 e

i,j
, (A1)

where R̂ is an operator that represents the response of

the measurement system to a signal s(xj, ti), and ei,j is the

noise with the covariance matrix Se 5 heeyi, where y
represents the complex conjugate transpose.

The problem can be expressed in the language of IFT

[Eq. (3a)] by writing the informationHamiltonianH(d, s)

as (Enßlin et al. 2009)

H(d, s)5H
0
2 jys1

1

2
syD21s1H

i
(d, s), (A2)

where H0 is essentially a normalizing constant that can be

ignored,D is an information propagator, j is an information

source, and ymeans the complex conjugate transpose. Also

Hi is an interaction term (Enßlin et al. 2009)

H
i
5 �

‘

n51

1

n!

ð
⋯
ð
L(n)

s1⋯sn
s
1
⋯s

n
ds

1
⋯ds

n
, (A3)

where L(n)
s1⋯sn

terms describe the interaction strength.

When the source term j, the linear informationpropagator

D, and the nonlinear interaction termsL(n)
s1⋯sn

are all known

or at least somemore or less accurate approximations can be

used for their description, the IFT approach provides an

effective, powerful, and mathematically elegant way to

find an unknown signal s either by using the classical so-

lution at theminimumofHamiltonian (dH/ds5 0) or with

the help of summation methods [e.g., with the help of

Feynman diagrams (Feynman 1949; Enßlin et al. 2009)].

But there is a whole class of problemswhere those terms

are unknown and too complex for deriving effective and

accurate approximations. In this case the ESP method

(Frank and Galinsky 2014), based on the principle of

maximum entropy (Jaynes 1957a,b), provides a general

and effective way to introduce powerful prior information

using coupling between different spatiotemporal points

that is available from the data itself. This is accomplished

by constructing a so-called coupling matrix that charac-

terizes the relation between locations i and j in the data:

Q
ij
5 e2gij . (A4)

Here the gij are Lagrange multipliers that describe the

relations and depend on some function of the space–time

locations i and j. The eigenvalues lk and eigenvectorsf
(k)

of the coupling matrix Q

�
j

Q
ij
f
(k)
j 5 l

k
f
(k)
i (A5)

then formally define the transition probability from lo-

cation j to location i of the kthmode (or path as it is often

called in the random walk theory) as

p
ijk
5

Q
ji

l
k

f
(k)
i

f
(k)
j

. (A6)

For each transition matrix [Eq. (A6)] there is a unique

stationary distribution associated with each mode k,

m(k) 5 [f(k)]2 , (A7)

that satisfies

m
(k)
i 5 �

j

m
(k)
j p

ijk
, (A8)

where m(1), associated with the largest eigenvalue l1,

corresponds to the maximum entropy stationary distri-

bution (Burda et al. 2009).

The EFD approach (Frank and Galinsky 2016a,b)

adds those coupling matrix priors into the information

Hamiltonian [Eq. (A2)] by expanding the signal s into a

Fourier expansion using {f(k)} as the basis functions

s
i
5 �

K

k

[a
k
f
(k)
i 1 aykf

y,(k)
i ]. (A9)

In this ESP basis the information Hamiltonian [Eq.

(A2)] can be written as

H(d, a
k
)52jykak 1

1

2
aykLa

k

1 �
‘

n51

1

n!
�
K

k1

⋯�
K

kn

~L(n)
k1⋯kn

a
k1
⋯a

kn
, (A10)

where matrix L is the diagonal matrix Diag{l1, . . . , lK}

composed of the eigenvalues of the coupling matrix, and jk
is the amplitudeofkthmode in the expansionof the source j

j
k
5

ð
jf(k) ds (A11)

and the new interaction terms ~L(n) are

~L(n)
k1⋯kn

5

ð
⋯
ð
L(n)

s1⋯sn
f(k1)⋯f(kn) ds

1
⋯ds

n
. (A12)

For the nonlinear interaction terms L(n)
s1⋯sn

the EFD

method again takes coupling into account through fac-

torization of L(n) in powers of the coupling matrix
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L(n)
s1⋯sn

5
a(n)

n
�
n

p51
P
n

m51
m 6¼ p

Q
pm

, (A13)

where a(n) & 1/max( jnk/lk), which results in

~L(n)
k1⋯kn

5
a(n)

n
�
n

p51

 
1

l
kp

P
n

m51

l
km

!ð�
P
n

r51

fkr

�
ds . (A14)

Thus, the EFD approach provides a very simple

expression for the classical solution for the ampli-

tudes ak

La
k
5

"
j
k
2 �

‘

n51

1

n!
�
K

k1

⋯�
K

kn

~L(n11)
k1⋯kn

a
k1
⋯a

kn

#
(A15)

through the eigenvalues and eigenvectors of the cou-

pling matrix [that may also include some noise correc-

tions (Frank and Galinsky 2016a,b)].
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