
A Simple and Effective Method for Separating Meteorological from
Nonmeteorological Targets Using Dual-Polarization Data

ALAMELU KILAMBI, FRÉDÉRIC FABRY, AND VÉRONIQUE MEUNIER

McGill University, Montreal, Quebec, Canada

(Manuscript received 3 October 2017, in final form 12 April 2018)

ABSTRACT

To satisfy the needs of the meteorological and aeroecological communities wanting a simple but effective

way of flagging each other’s unwanted echo for a variety of different operational radar systems, we evaluated

the ability of an estimate of depolarization ratio (DR) based on differential reflectivity (ZDR) and copolar

correlation coefficient (rHV) measurements to separate both types of echoes. The method was tested with

data collected by S- and C-band radars used in the United States and Canada. The DR-based method that

does not require training achieved 96% separation between weather and biological echoes. Since the mis-

classifications are typically caused by isolated pixels in the melting layer or at the edge of echo patterns, the

addition of a despeckling algorithm considerably reduces further these false alarms, resulting in an increase in

correct identification approaching 99% on test cases.

1. Wanted: Simple, robust target identification
approach

With the advent of dual-polarization weather radars,

there have been several echo classification schemes for

hydrometeor types as well as for the segregation of

precipitation echoes from nonprecipitation echoes. Ap-

proaches based on polarimetric measurements (Zrnić and

Ryzhkov 1999; Vivekanandan et al. 1999; Liu and

Chandrasekar 2000; Zrnić et al. 2001; Schuur et al. 2003;

Keenan 2003; Lim et al. 2005; Gourley et al. 2007;

Marzano et al. 2008; Park et al. 2009; Chandrasekar et al.

2013; Bechini and Chandrasekar 2015; Grazioli et al. 2015;

Besic et al. 2016; Roberto et al. 2017; to list a few) have

now become the norm. For the weather surveillance ra-

dars used in the United States (referred to as WSR-88Ds

or NEXRADs), many algorithms, such as precipitation

accumulation, use the result of the target identification

(ID) algorithm to determine how to process reflectivity or

Doppler velocity data; proper target identification is hence

key to the overall radar data quality.

Though the overall approach used to identify the

target is becoming standardized across countries, each

country uses its own recipes. These disparities partly

reflect the different radar systems used and partly result

from what targets are judged important to be properly

identified. These differences hurt the data exchanges

across countries and affect nonmeteorological uses of

weather radar data, such as for aeroecology, including

tracking bird and insect movement. In an era where

ground clutter is reasonably well eliminated, non-

meteorological echoes is increasingly synonymous

with biological echoes, and there is increasing in-

terest from ornithologists and entomologists to use

the readily available data from meteorological ra-

dars for their studies (C. Francis 2015, personal

communication).

Nonweather and weather echoes can be challenging to

separate, in part because of the great diversity in values of

reflectivity (Z), differential reflectivity (ZDR), differential

phase (cDP), and copolar correlation coefficient (rHV); all

of which can be measured. While weather echoes tend to

have high rHV (.0.9) and ZDR near or just above unity

(near or just above 0 dB) but a wide range of Z and cDP

values, biological echoes have no such limits except that

Z is generally below 30dBZ. As a result, in cases where the

rHV of biological echoes is very high, the WDR-88D al-

gorithm tends to identify these echoes as precipitation (see

Stepanian et al. 2016). Given that even state-of-the-art

algorithms obtain erroneous results, there is a perceived

need for a simpler approach that would 1) only initially

separate meteorological from nonmeteorological echoes,

2) perform equally well on weather surveillance radars

from different countries, and 3) ideally require minimumCorresponding author: Frédéric Fabry, frederic.fabry@mcgill.ca

JULY 2018 K I LAMB I ET AL . 1415

DOI: 10.1175/JTECH-D-17-0175.1

� 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Unauthenticated | Downloaded 02/01/24 09:02 PM UTC

mailto:frederic.fabry@mcgill.ca
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


tuning so that nonexperts in radar could implement it. This

is the task we chose to undertake.

2. Basis: A nonsphericity test

A commonly observed property of meteorological

targets compared to other targets is how they are si-

multaneously uniform in shape (high rHV) and close

to spherical (ZDR ’ 1 in linear units). This is why cir-

cular depolarization ratio (CDR) has long been used

as a mean to suppress weather echo contamination on

aviation radars (White 1954). Though most operational

radars cannot measure CDR because of their simulta-

neous transmission of pulses at horizontal and vertical

polarization, a proxy quantity dubbed depolarization

ratio (DR; Melnikov andMatrosov 2013; Ryzhkov et al.

2014, 2017) can be derived from availablemeasurements

using

DR5
Z

DR
1 12 2Z1/2

DRrHV

Z
DR

1 11 2Z1/2
DRrHV

, (1)

where ZDR is the differential reflectivity in linear scale.

While DR computed in (1) has linear units and has

values between 0 and 1, we convert it into decibels (dB)

[dB(x)5 10 log10(x)] for display purposes; in all latter

discussions, values of DRwill be in this dB unit. Figure 1

helps illustrate the relationship between values of DR,

those of rHV and ZDR, and the relative occurrence of

meteorological and nonmeteorological targets from a

training dataset described in section 3. As illustrated

in Fig. 1, the DR of meteorological targets is small. The

only weather echoes that have higher depolarization

and that are not included in Fig. 1 are from hail and

possibly melting graupel; but since those generally

have reflectivities never observed in biological echoes

(.35dBZ), a reflectivity threshold can be applied to

ensure that they are recognized as weather. For bi-

ological echoes, the high elongation of insects and the

large size and diverse shapes of birds essentially ensure

that either ZDR is very different from unity (or 0 dB)

or rHV is low, leading to larger DR values. Using the

density of echo occurrence for different values of ZDR

and rHV shown in Fig. 1, we initially determined a

threshold value of DR and reflectivity to separate

meteorological echoes from nonmeteorological echoes;
FIG. 1. Occurrence of precipitation and nonprecipitation

targets in ZDR–rHV space for our training dataset. (a) Density of

occurrence of precipitating targets based on 2 860 835 targets of

rain, snow, and melting snow. (b) Density of occurrence of non-

precipitating targets based on 1 024 054 targets. (c) Category of tar-

get most frequently observed for a given pair of ZDR–rHV values.

Gray curves are contours lines of four DR values, 225, 220, 215,

and 210 dB, calculated using (1). In (c), a thick dashed line shows

the 212-dB threshold used for the DR-based technique. Note how

precipitating targets are concentrated in low DR values that are

 
rarely observed in nonprecipitating targets; beware of the loga-

rithmic scale for the densities of occurrence when interpreting

this figure.
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we found that on the 5- and 10-cm radars used in Canada

and the United States, DR exceeding 212 dB and Z

lower than 35dBZ were generally associated with non-

meteorological echoes. The skill of this simple method

was then evaluated on test cases.

3. Data and processing

The data used to generate Fig. 1 were collected from

three sequences of WSR-88D data: KTYX (Fort Drum,

New York) data from 11 volume scans from 1607 to

1702 UTC 31 October 2013 were used to derive statistics

for widespread precipitation, a sector containing a mix of

weather and wind farm echoes in the lower elevations

being excluded from the computation; 10 volumes

scans of KTYX data on 28 September 2013 from 0337

to 0442 UTC were used to sample bird echoes; and

2 volume scans of highly aligned insects from KJGX

(Robins Air Force Base, Georgia) from 0002 to 0012

UTC19April 2016were used to complete the nonweather

echo statistics creation. While the sample is small for

training purposes, the training datasets included several

common situations as well as a highly aligned insect case

(Stepanian et al. 2016). The terms ZDR and rHV were

averaged from their original resolution (0.25 km3 0.58 for
WSR-88Ds in precipitation mode and 0.25 km 3 18 in
clear-airmode, 1 km3 18 forCanadian radars) to 1 km3 18
areas, and it is those values that are plotted in Fig. 1 and

other figures. These reduced-resolution fields were

also used to determine both the simple DR threshold

(212 dB) and the set of ZDR–rHV combination that

were more frequently associated with precipitation or

with nonprecipitation echoes. At first glance based on

Fig. 1c, the use of DR and the choice of its threshold value

may not look optimal: the potential for wrong precipitation

identification looks significant forZDRof 2–3 dBbecause of

the DR formula; the use of a lower threshold may then be

tempting to correct that weakness. But a lower threshold

results in a rapid loss of skill in melting precipitation.

And while one could design a formula better than (1)

to follow the precipitation-to-nonprecipitation transi-

tion of Fig. 1c, biological echoes with high rHV and

moderate ZDR are rare; more importantly, this non-

optimal formula remains usable evenwhenZDRestimates

are biased bymore than 1 dB, relaxing somewhat the need

for accurate ZDR calibration and attenuation correction.

In fact, a significant fraction of the dataset used in Fig. 1

hadZDR values biased low, resulting in peak occurrence of

precipitation echoes withZDR smaller than unity; but, one

can see that a slight displacement of the histogram to

higher ZDR values would not change how we separate

meteorological echoes from nonmeteorological echoes.

The DR approach was then evaluated on other events,

namely, a volumetric scan of a stratiform event from

KTYX at 0831UTC 11August 2015, one of birdmigration

from KTYX at 0403 UTC 27 September 2014 and one of

highly aligned insects fromKDGX(Jackson,Mississippi) at

0012 UTC 26 April 2016, taking care of echoes beyond

200 km that had precipitation. In both the training and

evaluation sets, precipitation and nonprecipitation echoes

were well separated, easing the validation task. That being

said, as will be illustrated later, the DR approach being

tested deals well with situations where both types of echoes

are observed. The measured values of ZDR and rHV were

used to compute DR and to separate meteorological from

nonmeteorological echoes using only that information.

Sometimes, especially in weak signal near the edge of

echoes, ZDR or rHV may be poorly evaluated, resulting

in an erroneous identification. To mitigate this problem,

once an initial target ID determination has beenmade, a

despeckling algorithm tries to remove false alarms: in a

group of nine 1 km 3 18 pixels (3 in azimuths 3 3 in

range), if the ID of the center pixel is different from the

majority of itself and that of its eight immediate neigh-

bors, it is changed to reflect that majority opinion.

4. Technique evaluation

Table 1 summarizes the skill results obtained. It

illustrates the great skill that this simple method has.

Two methods were used to compute skill: The fraction

of echoes correctly identified (FEI) for each target type

and the overall Heidke skill score (HSS; Heidke 1926;

Doswell et al. 1990), which is computed as

TABLE 1. FEI for the target ID algorithms before and after despeckling. Skill scores were computed based on 396 260 pixels of precipitation

(precip) and 192 523 pixels of nonprecipitation (nonprecip) echoes. Bold values highlight the scores for the optimum DR value.

Target

ID method

FEI

precip (raw)

FEI

nonprecip (raw)

HSS

(raw)

FEI precip

(despeckled)

FEI nonprecip

(despeckled)

HSS

(despeckled)

DR 5 215 dB 90.68% 98.66% 0.8542 95.02% 99.83% 0.9267

DR 5 214 dB 93.60% 98.07% 0.8909 97.25% 99.68% 0.9567

DR 5 213 dB 95.69% 97.20% 0.9146 98.38% 99.39% 0.9695

DR 5 212 dB 97.15% 95.82% 0.9257 99.01% 98.65% 0.9714

DR 5 211 dB 98.15% 93.60% 0.9237 99.39% 97.02% 0.9631

DR 5 210 dB 98.85% 90.08% 0.9069 99.65% 93.82% 0.9408
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HSS5
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, (2)

whereT is the number of classifications attempted;NC is the

number of correct ones (precipitation or nonprecipitation

echoes recognized as such); andC12 andC21 are the number

of incorrect classifications in precipitation events and in

nonprecipitation events, respectively. The crossover point

that maximized the detection of both nonprecipitation and

precipitation and minimized the false alarm rate was

about 212.5 dB on WSR-88D data; a similar test on Ca-

nadian C-band radar data had this threshold at212.7 dB.

The Heidke skill score that takes into account the larger

dataset of precipitation than of nonprecipitation echoes in

the WSR-88D evaluation dataset favored a 211.7-dB

value. In this context the 212-dB choice proved to be a

good one, and small variations (60.5 dB) around that

value do not result in marked changes in performance.

These skill scores also proved similar to those found on the

training set.

FIG. 2. PPIs of (a) Z, (b) ZDR, (c) rHV, (d) DR, (e) DR-based target ID, and (f) target ID after despeckling in

widespread precipitation. Some pixels are misclassified in the brightband region because of elevated DR; much of

that misclassification is removed by the despeckling algorithm.
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Figure 2 shows an example of the target ID perfor-

mance in a precipitation event using the DR-based

method. Most false alarms occur around the melting

layer that appears on these PPI as a ring of enhanced

reflectivity, higher differential reflectivity, and lower

correlation around the 80-km range; these are caused by

the variety of shapes perceived by radar when snow

melts. Under rare circumstances, if that shape variety

is high enough, then computed depolarization exceeds

our threshold and can lead to a false detectionofnonweather

echoes. But if these are isolated enough, they are mostly

removed by the despeckling algorithm.

At the other end of the spectrum, Fig. 3 shows a dif-

ficult event where insects were misclassified as pre-

cipitation by the WSR-88D algorithm (see Stepanian

et al. 2016). However, the DR-based algorithm had no

such problems in this case and properly identified all

echoes as coming from nonweather targets: even if in

some regions the copolar correlation of those insects was

unusually high (Fig. 3c), it was their high differential

reflectivity (Fig. 3b) that raised the computed de-

polarization (Fig. 3d) everywhere to a value that could

not be associated with weather. As a result, all targets

were identified as nonweather (Fig. 3e).

FIG. 3. PPIs of (a) reflectivity Z, (b) differential re-

flectivity ZDR, (c) copolar correction coefficient rHV, (d)

computed depolarization DR, and (e) DR-based target

ID in a highly aligned insect event that caused difficulties

to the WSR-88D target ID algorithm (Stepanian et al.

2016). The high ZDR values allowed the DR-based al-

gorithm to recognize these echoes as nonweather.
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To illustrate that this simple algorithm also works at

other wavelengths, we present images from two events at C

band (Fig. 4) andXband (Fig. 5)where insects andweather

echoes are both present. On Fig. 4, most missed identifi-

cation occurs on the edge of precipitation echoes (e.g., to

the southwest in Fig. 4e) where poor estimates of correla-

tion and differential reflectivity inweak signal lead to a high

computed depolarization; many of these are, however,

corrected by the despeckling algorithm (Fig. 4f). AtX band

(Fig. 5), the most significant identification problems arise

from biased estimates of differential reflectivity caused by

differential attenuation. Otherwise, a DR value of212 dB

separates well the weather from the nonweather echoes at

all major surveillance radar wavelengths.

5. Why DR works, where it fails

HowdoesDR compare to traditional dual-polarization

approaches for target identification? The main strength

of the DR is that it naturally combines rHV and ZDR so

FIG. 4. As in Fig. 2, but from the King City C-band radar in an event with a variety of meteorological and

nonmeteorological echoes. DR nicely separates nonweather echoes into warm colors and weather echoes into cold

colors except for a few pixels near echo edges (bad rHV estimates in weak signal).
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that low DR values correspond only to near-spherical

targets and highDRs imply either elongated targets (ZDR

6¼ 1) or high shape diversity (low rHV). In otherwords, the

DR separates uniform-spherical targets from the others

by doing an ‘‘AND’’ combination of the rHV and ZDR

tests; in contrast, traditional approaches based on fuzzy

logic independently score elongation and shape diversity

before combining the results. Hence, separation of

FIG. 5. PPIs at 18 elevation of (a) Z, (b) ZDR, (c) rHV, and (d) computed depolarization DR from the sixth Doppler on

Wheels (DOW-6) X-band radar at 0359UTC 5 Jul 2015. A combination of insect, ground, and convective precipitation echoes

canbeobserved.Nonweather echoes are visually recognized by their noisy texture in rHVand/orZDR, and those pixels haveDR

pixels in orange or red (greater than210 dB); weather echoes have smooth rHV and ZDR fields, and those have DR pixels in

green,cyan,orblue(less than215dB).Theexception isa fewpixels in thesouth(lowsignal)andafewbehindseveral cells (35km

east and 20 km north of the radar) where the measured ZDR has dropped below22 dB because of differential attenuation.

TABLE 2. Skill score of a target ID on the training set contrasting DR with fuzzy logic–based approaches. Fuzzy logic scores for target type

i5 (1, 2) were computed using Si 5AP(target5 ijrHV)1 (12A)P(target5 ijZDR), where P(xjy) is the probability of observing x given y com-

puted from the training dataset, andA is a constant that is either 1 (rHV-based test), 0 (ZDR-based test), or the value thatmaximized the sum of FEI

for both target types (optimum blend). Three scenarios are considered, one with perfect data and two with a20.4-dB and a10.4-dB bias on ZDR.

Bold values highlight the most important scores of the two best target identification methods considered.

Target ID

method

FEI precip

(raw)

FEI nonprecip

(raw) HSS (raw)

FEI precip

(60.4-dBZDR bias)

FEI nonprecip

(60.4-dBZDR bias)

HSS

(60.4 dBZDR bias)

rHV alone (A 5 1) 94.216% 91.606% 0.8373 — — —

ZDR alone (A 5 0) 91.683% 77.479% 0.6900 81.875% 75.694% 0.5308

87.224% 79.932% 0.6395

Optimum fuzzy logic

using rHV and ZDR

95.112% 97.468% 0.8939 95.045% 97.238% 0.8911

93.962% 94.491% 0.8534

DR 5 212.7 dB 96.303% 96.718% 0.9096 96.311% 96.500% 0.9083

96.100% 96.977% 0.9078
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nonprecipitation and precipitation targets is better with

DR than with rHV or ZDR and comparable with an op-

timal linear combination of the two. Furthermore, the

DR-basedmethod is also less sensitive toZDRbiases than

the approach based on fuzzy logic (Table 2). This is an

accidental consequence of the fact that contours of con-

stant DR do not follow the shape of the rHV–ZDR

boundary that separates weather from nonweather

echoes (Fig. 1c); thus, a small horizontal displacement of

that boundary caused by a ZDR bias does not result in

many additional ID errors. That being written, like most

algorithms, it works better given properly estimated

inputs. In the absence of reasonable corrections, if ZDR

biases become large as can happen at X band (see, e.g.,

Fig. 5b, in the northeast when ZDR gets below 22 dB),

estimated depolarization rises rapidly and the algorithm

FIG. 6. PPIs of (a) Z, (b) ZDR, (c) rHV, (d) computed depolarization DR, (e) DR-based target ID, and (f) WSR-88D

target ID during a hailstorm with insect echoes. In (e) pixels in cyan labeled as ‘‘Cor Prec’’ would have been

identified as nonweather echoes but were corrected to precipitation because their reflectivity exceeded 35 dBZ.

In this case the performance of the simple DR-based algorithm compares well with that of the much more

sophisticated WSR-88D algorithm in this complex situation.
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starts to fail. With a Heidke skill score of nearly 0.91, the

DR-based technique is also largely superior to using the

standard deviation of differential phase (Heidke skill

score of 0.60 on the events studied).

One of the weaknesses of the DR-based technique is its

reliance on good-quality rHVestimates.Hence, false alarms

will occur in very weak echoes, where low signal strength

affects rHV data quality, as well as in heavy convection,

when rHV values are lowered by hail (Fig. 6), melting

graupel, or strong gradients of cDP in azimuth or elevation.

We find that false alarms in precipitation are reduced when

nonprecipitation echo identification is accepted only for

reflectivity lower than 35dBZ (Fig. 6), recognizing that it is

an imperfect solution to a complex problem.

6. Concluding remarks

In this work a target ID approach combining in-

formation fromZDR and rHV to estimate depolarization

was found to separate meteorological echoes from

nonmeteorological with great skill on a variety of op-

erational radar systems without the need for extensive

tuning. While in many ways such a simple approach may

be considered a step backward compared to the current

state of the art, it will appeal to researchers looking for a

uniform way of distinguishing meteorological and non-

meteorological radar echoes across several radar sys-

tems. Furthermore, nothing prevents using DR as an

input to future ID algorithms given its great ability to

separate meteorological and nonmeteorological echoes.
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