

PERILS Data Overview, QC, Availability

Flexible Array of Radars and Mesonets University of Illinois

Joshua Wurman Karen Kosiba Joshua Aikins Paul Robinson Trevor White Brian Pereira Oluyinka Olewale

Available by FTP

By PERILS design, instruments are deployed as parts of arrays to maximize success of integrated data, not only individual sub-project goals.

Scientific success and maximum exploitation of integrated data sets depends on free sharing of data

FARM to Table

- Modern, repeatable, verifiable science requires raw data availability, as well as cited, and/or provided, specific, repeatable, methods.
- Heavily processed data , e.g staggered-PRT velocity, Z, rho-HV, should be traceable back to raw observations.
- What are the ingredients in that data sausage?
- Do you trust that velocity or ZDR product, or clutter filter
- Can those fields be recreated?
- Are your analyses repeatable?

3

FARM to Table

FARM makes available:

- Radar calibration files
- Raw time series (by mail)
- Code and formulas used for indexing , clutter filters, pulse pair or other, staggered PRT methods, filtering, parameter files used when converging IQ to processed products
- Inclinometer data and bubble level images
- ZDR birdbath time series and calibration adjustments
- Raw moments and corrected moments (e.g. raw ZDR and corrected ZDR)
- Data and code permitting staggered and individual short/long pulse velocity product (VShort, Vlong, Vstagger, ZH, ZV, etc.)
- Data allowing merged Frequency1 + Frequency2 calculations to reduce noise and error
- DORADE and CFRADIAL
- Level L0, L1, L2+ sounding data, raw through filtered and processed, EOL and SPC formats, including SHARPpy skewT plots
- Operator notes, gps
- READMEs describing navigation and other adjustments
- GURU deployment maps

There's much more available from radars than a few processed products

Maybe you like or don't like clutter filtered data

Maybe you want to reduce noise in, say, the ZDR field by combining independent Freq1 and Freq2 data

Maybe you don't like the staggered PRT Velocity speckling

Maybe you want 1-degree, or 0.2 degree beam indexing

Ask us, and we can work with you, going back to the raw I,Q data

PERiLS 2023 Data Collection Summary

Radar Summary

Operated: Feb. 16 (IOP01) to Apr. 27, 2023 (IOP06)

COW:

Dual-pol Multi-Doppler member

DOW7:

Dual-frequency, dual-pol Multi-Doppler member

DOW6:

Single-frequency, dual-pol Chasing radar, filler radar, targeted at last minute Ad hoc Multi-Doppler member

No Data

Data Available

DOW6 filled in when other PERiLS radars were unavailable for some IOPs, to complete dual-Doppler lobes, and to conduct "chasing"/targeted missions.

Platform	IOP01	IOP02	IOP03	IOP04	IOP05	IOP06
COW1						
DOW6						
DOW7						
SCOUT1 Mobile Mesonet						
SCOUT3 Mobile Mesonet						
SONDE1 Soundings	8	7	7	8	5	3
SONDE2 Soundings	7	6	4	7	4	
SONDE3 Soundings	6	5	5	9	4	
SONDE4 Soundings	8	4	6	9	4	
SONDE5 Soundings	8	9	8	11	7	
PODs	13	13	13	13	13	8
Disdrometers	3	3	3	3	3	2

Radar Data QC Process

Basic Radar QC:

- Geo-reference (Heading, Lat/Lon, rangeto-first-gate)
- Reflectivity Calibration/Correction
- ZDR Calibration/Correction
- Elevation Correction (COW)
- Custom beam indexing
- Default ground clutter filter
- Parsing (slicing sweeps)
- Metadata

Auxiliary Documents and Documentation:

- READMEs
- Operator Notes
- Inclinometer Files
- Tuner log
- Mast Data
- Site/IOP, bubble level, weather Pictures
- Processing code
- Calibration files

lat 45.445763° lon -72.994304° elev 35 m eye alt 30.04 km 🔘

magery Date: 6/2/2018

Geo-Referencing via Clutter Targets

Solar Alignment (daytime only, of course) (within 0.2)

Also used to verify elevation angle (within 0.1-0.2)

Z Correction/Calibration:

Moderate intensity precipitation (subjectively avoiding suspected attenuation and Mie scattering regions)

- Most linear response region of receiver (-90 to -60 dB)
- Match height/time with 88D
- DO for all radars/frequencies and cross check

Z Correction/Calibration: Result

One never has exact agreement, due to geometry, attenuation, and general "radar-ness"

We try hard to get the best, consensus, Z values.

ZDR Correction/Calibration:

- Vertical (VER) scans in moderate precipitation every ~12 minutes •
- In linear response region of receiver (-95 to -55 dB) •
- Histogram of filtered ZDRM to get offset find median
- Do for all radars/all frequencies AND cross check

Assumption: Hydrometeors/cloud particles have $\int ZDR = 0 \, dB$ at vertical incidence (e.g. Gorgucci et al. 1999)

Median = 0.65 dB = ZDR Offset

E. Gorgucci, G. Scarchilli and V. Chandrasekar, "A procedure to calibrate multiparameter weather radar using properties of the rain medium," in IEEE Transactions on Geoscience and Remote Sensing, vol. 37, no. 1, pp. 269-276, Jan. 1999, doi: 10.1109/36.739161

Message: From 03/06/2022 12:42:05.510 to 03/06/2022 12:42:17.553 for DOW7hig

551 gates

lessage

Message Finishe

Message

Message

Message:

Finished!

3.85 H

at 89.0 deg.

3.75 3.85 H

Points below:

Message: Counts Histogram in regular intervals of ZDRFILT

ZDR Correction/Calibration: Example from COW1 PERiLS 2023 IOP01 Decide a tolerance (+/-0.2 dB) and apply offsets for particular time intervals (volume by volume) RUN RECURSION AND ROTATION MILES

When measured ZDR offset > tolerance, these volumes are noted in READMEs (typically limited VER scan data for reliable offset)

PROJECT NAME:	PERiLS
IOP NAME:	IOP01
IOP DATE:	February 16 - 17, 2023
Author of README:	Josh Aikins
Date of README:	8/18/2023

READMEs

Radar Name:DOW7Frequency:9.35 GHz (low), 9.5 GHz (high)File Format:dorade & cfradial netcdfDate Translated:7/7/2023Number of Files:2438 (high) + 2438 (low)IOP Start Time (UTC):16:39 2/16/2023

IOP End Time (UTC): 01:22 2/17/2023

Receiver Configuration:

Time (start – end)	Pulse Length (ns)	Gate Length (m)	Num. of Gates	Range (km)	Stagger	PRF (Hz)	Nyquist Velocity (m/s)	
16:39:56 (2/16) – 01:22:13 (2/17)	500	75	1000	75	3/4	1666.7/ 1250	39.4 (high) 40.1 (low)	

Scan Strategies:

Time (start – end)	Regime / Scan ID	Rotation Rate	Sync	Vol. per sync	Elevation Angles	Azimuth Angles
16:39:56 (2/16) – 01:22:13 (2/17)	vol6m30 + vol31s + vertpos + Sync	30 - 31 deg/s SUR 50 deg/s VER	12 min	3	0.5° - 9.5° SUR (x27) 0.5° - 9.5° SUR (x27) 89° VER (x2)	0° - 360°

HEADERS / NAVIGATION

Latitude:	32.711021 N	Obtained from GPS + verified with Google Earth
Longitude:	88.172447 W	Obtained from GPS + verified with Google Earth
Altitude:	53 m	Approximated using Google Earth + USGS 3DEP
Heading:	276.7 deg	Solar Alignment + Clutter

Applied ZDR Offset Corrections:

Time Start	Time End	ZDR Corrections (High)
02/16/2023 16:36:00	02/16/2023 16:59:59	-0.40
02/16/2023 17:00:00	02/16/2023 17:23:59	-0.10
02/16/2023 17:24:00	02/16/2023 18:23:59	0.15
02/16/2023 18:24:00	02/16/2023 19:35:59	0.05
02/16/2023 19:36:00	02/16/2023 21:23:59	0.20
02/16/2023 21:24:00	02/16/2023 22:23:59	-0.05
02/16/2023 22:24:00	02/17/2023 01:23:59	0.00

POD/Mesonet Data QC

- Trim data file to deployment period
 - POD: stationary deployment
 - MM: stationary + driving deployment (parking lot to parking lot)
- Import into EXCEL template
 - Input blade anemometer offset
 - Input POD/MM heading
 - Input pressure correction
 - SPECIAL: Replace blade anemometer wind data with sonic (if needed)
 - Wind directions fixed to True North (calculates U & V components)
 - Computes 1-sec, 3-sec, & 1-min centered averaged winds

U	V	W	X	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ	AK	AL	AM	AN	AO	AP	AQ	AR	AS	AT	AU
Stationary	Threshol	d>	1		Anemometer Offset> 176.3 Pressure Offset>					0																
		λ.	t		Blade Anemometer Spd/Dir Correction							Latitude	Longitude	1-sec	1-sec	1-sec	3-sec	3-sec	3-sec	3-sec	1-min	1-min	1-min	1-min	Corr	
Heading	Heading	ţi	2	- [Wind Dir Corr	Veh Spd	U obs	V obs	U veh	V veh	U true	V true			Wind Spd	Wind Spd	Wind Dir	U	V	Spd	Dir	U	V	Spd	Dir	Pressure
Override	Final	Sta	Ē		deg	m/s	m/s	m/s	m/s	m/s	m/s	m/s	dec	dec	m/s	kts	deg	m/s	m/s	m/s	deg	m/s	m/s	m/s	deg	mb
270	270	1	0		128.19	0.00	-3.24	2.54	0.00	0.00	-3.24	2.54	33.45481	-88.80888	4.1	8.0	128.2									997.8684
270	270	1	0		123.98	0.00	-3.25	2.19	0.00	0.00	-3.25	2.19	33.45481	-88.80888	3.9	7.6	124.0	-3.05	1.45	3.4	115.5					997.9496
270	270	1	0		81.9	0.00	-2.66	-0.38	0.00	0.00	-2.66	-0.38	33.45481	-88.80888	2.7	5.2	81.9	-2.38	0.80	2.5	108.7					997.9496
270	270	1	0		116.04	0.00	-1.23	0.60	0.00	0.00	-1.23	0.60	33.45481	-88.80888	1.4	2.7	116.0	-2.26	1.05	2.5	115.0					997.9496

POD Intercomparison: Pressure Offsets

POD_0 -0.04 +/- 0.18
POD_N 1.77 +/- 0.28
POD_M -0.51 +/- 0.18
POD_L -0.54 +/- 0.22
POD_K 0.02 +/- 0.21
POD_ 0.48 +/- 0.28
POD_I -0.21 +/- 0.29
POD_H 0.04 +/- 0.30
POD_G -1.26 +/- 0.30
POD_F -0.14 +/- 0.30
POD_E -0.05 +/- 0.30
POD_D 0.04 +/- 0.29
POD_B 0.39 +/- 0.29
DD mean bias +/- 1SD

IOP Start/Stop Times

Soundings: QC Overview

• L0

- Field Data Collection (GRAWMET Run 1)
- Raw Time Series Analysis
- Initial Conditions Verification (mistakes are made sometimes)
- GRAWMET Run 2
- Convert to CSV & remove descent data

• L1

- Run through ASPEN Quality Control software (NCAR) Removes bad data (new 2023!)
- Output EOL formatted sounding file
- Output ASPEN SkewT plots
- Correct EOL file headers

• L2

- Use modified FORTRAN scripts to interpolate EOL soundings to constant height (Hgt) and pressure (Prs) sounding files
- Add objective QC flags (super-adiabatic T/Td, descent)
- Add additional QC flags manually (visually bad/questionable) data gaps, T/Td spikes (sensor failures)
- Convert Hgt sounding files to SPC format
- Ingest SPC soundings into SHARPpy & output skewT, hodograph, & indices
- README, User Guide, detailed QC overview available

L0 - Raw Time Series Analysis

• T sensor failure example

L1 – ASPEN QC

- Atmospheric Sounding Processing Environment (ASPEN)
 - <u>https://www.eol.ucar.edu/content/aspen</u>
 - Outlier, buddy, limit, filter checks
 - Smoothing
 - Remove bad T/Td layers (sensor failures)

2020/401_0712_JOP44_070064.cov 1044/3077087.2088	20220-01_0712_JOP-04_SOLDE4-cov NO-4.0207 W07.2088
20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ed) Removed
50 Sensor F	Failure (T/Td spike) Removed

Advanced Configuration Manager	ment				? ×
QC Parameters Proces	sing WMO Auto Save S	Synoptic Map Visual			
		Configuration set name	: upsonde-1s		
Pressure Temper	rature RH	GPS Lat/Lon	GPS Alt W	linds	
				10 (s)	Dropsonde Wind Equilibration Time
0 (s) 0	(s) 0 (s)				Dropsonde Equilibration Time Override
				i	Dynamic Correction
20	(s)			10 (s)	Dynamic Correction Wavelength
					Thresholding
4.5 std. dev. 5	std. dev. 10 std. de	ev.		5 std. dev.	Outlier Check
				Ĩ	Disable Outlier Check
0 (mb) 0	(degC) 0 (%)				Offset to Add
1.5 (mb/s) 0.5	(degC/s) 3 (%/s)	0.005 (deg/s)	50 (m/s)	1.5 (m/s^2)	Buddy Check Slope
30 (s) 20	(s) 20 (s)	30 (s)	10 (s)	30 (s)	QC Filter Wavelength
1.5 (mb) 0.8	(degC) 20 (%)	0.01 (deg)	50 (m)	3 (m/s)	QC Filter Deviation Limit
			Γ	1	Disable QC Filter
10 (s) 10	(s) 10 (s)			10 (s)	Final Smoothing Wavelength
			Γ	1	Disable Satellite Check
				4	Number of Satellites Limit
				Ĩ	Disable Wind Error Check
					Pressure Monotonic Check
				5 (s)	Vertical Velocity Pres Smoothing WL
				2.5 (m/s)	Vertical Velocity Difference Limit
			Γ	1	Disable Vertical Wind Calculation
					OK Cancel

L1 – ASPEN QC

• Output:

- EOL sounding file
- SkewT plot
- Summary PDF

Data Typ	e/D	irec	tion:			FA	RM Mobil	e Radios.	sonde/Asc	ending						
File For	mat	/Ver	sion:			EO	L Soundi	ng Forma	t/1.1							
Project	Nam	e/Pl	atform	m :		PE	Rils/FAF	M_Mobile		FOI						
Launch S	ite	:				SO	NDE1								LUL	
Launch L	oca	tion	(lon	,lat,alt)	:	88	17.89'W	-88.298	3150, 32	54.65'N	32.9108	00, 4	9.10			
UTC Laun	ch	Time	(y,m	,d,h,m,s)	:	20	22, 03,	22, 18:0	3:37							
Sonde Id	/So	nde	Type:			18	043739/0	RAW DFM-	-09							
Referenc	e L	aunc	h Data	a Source/	Time:	un	known/un	known								
System O	per	ator	/Comm	ents:		/										
Post Pro	ces	sing	Comm	ents:		As	pen V3.4	.7; Crea	ted on 0	4 Aug 20	22 18:3	6 UTC; C	onfigurati	on editsonde		
1																
Time		UTC		Press	Temp	Dewpt	RH	Uwind	Vwind	Wspd	Dir	dZ	GeoPoAlt	Lon	Lat	GPSAlt
sec	hh	mm	SS	mb	С	С	90	m/s	m/s	m/s	deg	m/s	m	deg	deg	m
-1.00	18	3	36.00	1003.60	22.50	16.63	69.00	-1.74	4.79	5.10	160.00	-999.00	49.10	-88.298150	32.910800	-999.00
0.00	18	3	37.00	1003.40	22.35	16.48	68.97	-1.74	4.80	5.11	160.05	3.45	50.88	-88.298150	32.910800	49.10
1.00	18	3	38.00	1002.96	22.25	16.38	68.97	-1.80	4.88	5.21	159.74	3.80	54.62	-88.298190	32.910860	53.80
2.00	18	3	39.00	1002.48	22.16	16.30	68.97	-1.88	4.98	5.32	159.37	4.22	58.87	-88.298220	32.910930	58.60
3.00	18	3	40.00	1001.94	22.09	16.24	69.03	-1.96	5.09	5.46	158.95	4.54	63.48	-88.298260	32.910990	63.40
4.00	18	3	41.00	1001.39	22.01	16.20	69.16	-2.05	5.21	5.60	158.55	4.74	68.26	-88.298290	32.911050	68.20
5.00	18	3	42.00	1000.84	21.94	16.18	69.37	-2.14	5.33	5.74	158.17	4.82	73.09	-88.298330	32.911120	73.00
6.00	18	3	43.00	1000.28	21.88	16.17	69.62	-2.22	5.45	5.89	157.81	4.83	77.92	-88.298370	32.911180	77.80
7.00	18	3	44.00	999.73	21.83	16.17	69.83	-2.31	5.57	6.03	157.49	4.79	82.71	-88.298400	32.911250	82.60
8.00	18	3	45.00	999.19	21.78	16.15	69.95	-2.39	5.69	6.17	157.24	4.76	87.46	-88.298440	32.911310	87.30
9.00	18	3	46.00	998.64	21.73	16.12	69.99	-2.47	5.81	6.31	157.00	4.77	92.17	-88.298470	32.911370	92.10
10.00	18	3	47.00	998.10	21.69	16.08	70.01	-2.55	5.93	6.46	156.74	4.82	96.87	-88.298510	32.911440	96.90

Processing Steps

• 20220322_1803_IOP01_SONDE1.csv

- QC processing completed (in less than 1.0s)
- Levels created (in less than 1.0s)
- WMO message coded (in less than 1.0s)
- Tabs updated (in 3.0s)
- Levels created (in 1.0s)

QC Data Recovery Statistics

- 2826 raw data records
- pres : input file reported 2826 (100.0%) values, QC retained 2826 (100.0%), overall rate: 100.0%

Summary

- tdry : input file reported 2826 (100.0%) values, QC retained 2826 (100.0%), overall rate: 100.0%
- RH : input file reported 2826 (100.0%) values, QC retained 2826 (100.0%), overall rate: 100.0%
- winds: input file reported 2826 (100.0%) values, QC retained 2826 (100.0%), overall rate: 100.0%

QC Height Integration

Downward integration starts @ 49.1m

QC for GPS Altitude

- Points which failed the limit check: 0
- Sats check not applied.
- Points which failed the buddy check: 0
- Points which failed the Q/C filter check: 0

21

L2 – Constant Hgt & Prs Interpolation + QC Flags

- Following <u>Ciesielski et al. (2012)</u>:
 - Run modified FORTRAN scripts (webpage) on EOL sounding file
 - Output sounding data with constant height interpolation (5 m)
 - Output sounding data with constant pressure interpolation (1 mb)
 - Add quality control flags for pressure, height, temperature, dewpoint, & winds
- Objective QC checks
 - Super-adiabatic layers (T/Td < -15°/km) → flag = 2
 - Non-hydrostatic check (Height decreases) \rightarrow flag = 2

STN	D	ATE	GMT	HTS		LAT	1	LON]
SONDE1	20220	322	1803	49	32	2.91080	-88.298	315							
NLVL =2	2372														
	P	HT	T	C	TD	DIR	SPD	QP	QH	QT	QD	QW	LON	LAT	
1003.	.6 4	9.1	22.5	0 10	6.63	160.04	5.10	1	1	2	2	1	-88.29815	32.91080	
1003.	5 5	0.0	22.4	2 10	6.55	160.06	5.10	1	1	2	2	1	-88.29815	32.91080	
1002.	9 5	5.0	22.2	4 10	5.37	159.71	5.21	1	1	2	2	1	-88.29819	32.91087	
1002.	3 6	0.0	22.1	4 10	5.29	159.22	5.36	1	1	2	2	1	-88.29823	32.91095	
1001.	.8 6	5.0	22.0	6 10	5.23	158.80	5.50	1	1	2	1	1	-88.29827	32.91101	
1001.	.2 7	0.0	21.9	B 1(5.19	158.38	5.65	1	1	2	1	1	-88.29830	32.91108	
1000.	.6 7	5.0	21.9	2 10	5.18	158.01	5.80	1	1	1	1	1	-88.29835	32.91114	
1000.	.0 8	0.0	21.8	6 10	6.17	157.68	5.95	1	1	1	1	1	-88.29839	32.91121	

Flag	Meaning
1	parameter good
2	parameter objectively questionable
3	parameter visibly questionable
4	parameter objectively bad
5	parameter visibly bad
6	parameter interpolated
7	parameter estimated
8	parameter unchecked
9	parameter omitted/missing

Ciesielski, P. E., Haertel, P. T., Johnson, R. H., Wang, J., & Loehrer, S. M. (2012). Developing High-Quality Field Program Sounding Datasets, *Bulletin of the American Meteorological Society*, **93(3)**, 325-336. <u>https://doi.org/10.1175/BAMS-D-11-00091.1</u>

Hgt

L2 – Visual QC Flags

- Add visual QC checks
 - T/Td "spikes" from sensor failures \rightarrow flag = 5 (now removed by ASPEN, new 2023)
 - Missing height/pressure/GPS from RTS \rightarrow flag = 3
 - T/Td near saturation in tropopause \rightarrow flag = 3
 - Super-adiabatic layers likely affected by evaporation of wet sensor \rightarrow flag = 3 (where not already flag = 2)

riag	Meaning
1	parameter good
2	parameter objectively questionable
3	parameter visibly questionable
4	parameter objectively bad
5	parameter visibly bad
6	parameter interpolated
7	parameter estimated
8	parameter unchecked
9	parameter omitted/missing

L2 – SPC+SHARPpy SkewT Plots

- Python script converts L3 Hgt sounding file to SPC format (keeps questionable data, removes bad data)
- Ingest SPC formatted sounding data into SHARPpy & output SHARPpy skewT plots with indices & hodographs.
 - <u>https://github.com/sharppy/SHARPpy/blob/main/README.md</u>
 - Currently using v1.4.0b1 binary (works on Windows 10)

Sounding README

- A README document is created for each Vehicle ID:
 - # of launches
 - Launch details (launch times UTC, location, ascent rate, max altitude, termination time)
 - Launch notes from the field
 - QC notes (issues found during QC process)
 - Brief QC methodology

PERiLS PROJECT NAME: SONDE3 SOUNDING TEAM: IOP01 IOP NAME: IOP DATE: February 16 -17, 2023 Author of README: Paul Robinson & Josh Aikins Date of README: 10/30/2023 Number of Launches: 6 Start-End Time (UTC): 16:30:08 UTC (02/16) - 00:56:55 UTC (02/17) GRAW DFM-09 Radiosonde Type: Balloon Type: Kaymont 150 (150 g) Processor: GRAWMET 5.16 software

AU	NC	н	TA	В	-E	
		1.		- 1-	T :	- 1

Number	(UTC)	(deg)	(deg)	(m)	(sfc-3km AGL)	Maximum Altitude (m)	Termination Time (UTC)
1	16:30:08	32.473000	-88.094503	45	4.0	13063	17:35:27
2	17:56:19	32.473000	-88.094503	45	5.1	17389	18:53:41
3	19:59:38	32.473000	-88.094503	45	4.7	11309	20:44:57
4	21:00:08	32.473000	-88.094503	45	5.5	15746	21:59:15
5	00:00:19	32.473000	-88.094503	45	4.7	13109	00:41:36
6	00:56:55	32.473000	-88.094503	45	5.8	20652	02:04:12

LAUNCH NOTES

- Launch 1: None. Launch 2: None. Launch 3: None. Launch 4: None. Launch 5: None.
- Launch 6: None.

QUALITY CONTROL NOTES

Launch 1: The launch start time was adjusted by -6 seconds to 14:51 (elapsed time in mm:ss) in the time series data. Temperature and dewpoint were manually flagged as visually questionable during a temperature rebound layer 2895 - 3355 m (720 - 681 mb) directly above an objectively questionable super-adiabatic layer likely influenced by evaporative cooling as the sensor exited a moist cloud layer and entered dry air

24

Disdrometers

Simple conversion from ATM4 format (88 lines per record) to CSV (one record per line) Raw 10-s resolution data provided

Date/Time String, Station Name, Station Number, PARSIVEL Rain Intensity, PARSIVEL Rain Accumulation, Wx Code SYNOP wawa, Wx Code SYNOP www, Wx Code META

2022-03-22 17:49:10, FARM P2S02, S02, 0.000, 0.00, 00, 00, NP, C, -9.999, 20000, 10, 21710, 0, 22, 450123, 2.11.2, 2.11.1, 0.00, 12.3, 0, 0.000, -9.999 2022-03-22 17:49:20, FARM P2S02, S02, 0.000, 0.00, 00, 00, NP, C, -9.999, 20000, 10, 21707, 0, 22, 450123, 2.11.2, 2.11.1, 0.00, 12.2, 0, 0.000, -9.999 10 2022-03-22 17:49:30, FARM P2S02, S02, 0.000, 0.00, 00, 00, NP, C, -9.999, 7094, 10, 21821, 0, 22, 450123, 2.11.2, 2.11.1, 0.00, 12.2, 0, 0.000, -9.999, 11 2022-03-22 17:49:40, FARM P2S02, S02, 0.000, 0.00, 00, 00, NP, C, -9.999, 5426, 10, 21717, 0, 22, 450123, 2.11.2, 2.11.1, 0.00, 12.2, 0, 0.000, -9.999, 12 2022-03-22 17:49:50, FARM P2S02, S02, 0.000, 0.00, 00, 00, NP, C, -9.999, 16502, 10, 21713, 0, 22, 450123, 2.11.2, 2.11.1, 0.00, 12.2, 0, 0.000, -9.999 13 2022-03-22 17:50:00, FARM P2S02, S02, 0.000, 0.00, 00, 00, NP, C, -9.999, 19160, 10, 21721, 0, 22, 450123, 2.11.2, 2.11.1, 0.00, 12.2, 0, 0.000, -9.999

2 yyyy-mm-dd hh:mi:ss UTC, xxxxxxxxxx, xxxx, mm/h, mm, Table 4680, Table 4677, Table 4678, see NWS, dBZ, m, s, 1, 1, deg C, xxxxxx, x.xx.x, x.xx.x, 3 2022-03-22 17:48:20, FARM P2S02, S02, 0.000, 0.00, 00, 00, NP, C, -9.999, 20000, 10, 21710, 0, 22, 450123, 2.11.2, 2.11.1, 0.00, 12.3, 0, 0.000,

4 2022-03-22 17:48:30, FARM P2S02, S02, 0.000, 0.00, 00, 00, NP, C, -9.999, 20000, 12, 21702, 0, 22, 450123, 2.11.2, 2.11.1, 0.00, 12.3, 0, 0.000, 2022-03-22 17:48:40, FARM P2S02, S02, 0.000, 0.00, 00, 00, NP, C, -9.999, 20000, 10, 21708, 0, 22, 450123, 2.11.2, 2.11.1, 0.00, 12.3, 0, 0.000, 6 2022-03-22 17:48:50, FARM P2S02, S02, 0.000, 0.00, 00, 00, NP, C, -9.999, 20000, 10, 21711, 0, 22, 450123, 2.11.2, 2.11.1, 0.00, 12.3, 0, 0.000, -9.999 7 2022-03-22 17:49:00, FARM P2S02, S02, 0.000, 0.00, 00, 00, NP, C, -9.999, 20000, 10, 21819, 0, 22, 450123, 2.11.2, 2.11.1, 0.00, 12.3, 0, 0.000,

1	01:0000.000
2	02:0000.00 ATM4
3	03:00
4	04:00
5	05: NP
6	06: C
7	07:-9.999
8	08:20000
9	09:00010
10	10:21710
11	11:00000
12	12:022
13	13:450123
14	14:2.11.2
15	15:2.11.1
16	16:0.00
17	17:12.3
18	18:0
19	19::36:42 3/3/2021 2
20	20:17:48:20
21	21:22.03.2022
22	22:FARM_P2S02
23	23:502
24	34:0000.00

CSV

-9.999

-9.999

All FARM data from PERILS 2023 have been released (and 2022, of course)

2023 Radar data: COW1, DOW6, DOW7

Wurman, J., & Kosiba, K. (2023). *PERILS 2023 radar data (Version 1)* [Data set]. Flexible Array of Radars and Mesonets (FARM), University of Illinois. <u>https://doi.org/10.48514/K7WX-NP56</u>

2023 Non-Radar data: MM, PODs, Disdrometers, Soundings, DOW meteorological masts:

Wurman, J., & Kosiba, K. (2023). *PERILS 2023 Mobile Mesonet, Sounding, Pod, and Disdrometer Data (Version 1)* [Data set]. Flexible Array of Radars and Mesonets (FARM), University of Illinois. <u>https://doi.org/10.48514/S52C-MH37</u>

Data for PERILS and other projects are available at:

https://publish.illinois.edu/dowfacility-upgrade/farm-data/

*Customized data (e.g. different indexing, raw I,Q time series, by request)

If you have questions relating to data, please contact the FARM Data Manager: Josh Aikins (jaikins@illinois.edu)

GURU2 Deployment Loops