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Background

• Quasi-linear convective systems (QLCSs) are a relatively common 
occurrence in the southeastern US during the cool-season

• Storms often develop in high shear, low CAPE (HSLC) environments 
(Sherburn & Parker, 2014)
• Surface-based CAPE ≤ 500 J kg-1

• MUCAPE ≤ 1000 J kg-1

• 0-6 km shear ≥ 18 m s-1

• Can produce an array of severe weather
• Tornadoes, damaging straight-line winds, lightning, and heavy precipitation 



Research Objectives

• Determine thermodynamic and kinematic properties of cool-season 
QLCSs
o May provide vital information on the kinematics of updrafts and 

downdrafts 
oMagnitude, width, height of updraft/downdraft 
o Location of maximum updraft/downdraft  

• Potential differences between tornadic and nontornadic QLCSs
• Assess severity of QLCS (wind damage, lightning, tornadoes, hail, etc) 
• Identify propagation mechanism (bore, density current, hybrid) 
• Identify cold pool intensity and its relation to propagation speed 
• Assess environmental and storm parameters 



Methodology/Data

Case 1: UAH MAPNet

• X-band profiling radar (XPR; 6 Hz resolution)

• Berm Surface Data (5 second resolution)
• Surface observations (temperature, dewpoint, pressure, wind speed, wind direction)
• Derived thermodynamic calculations (potential temperature, equivalent potential 

temperature, virtual temperature, mixing ratio, etc.)
• Equivalent potential temperature derived following Bolton (1980)

• Derived perturbations for surface measurements following similar approach from 
Hutson et al. (2019) for thermodynamic variables
• Averaged variable of interest over 15 minutes, at least for 5 minutes before passage of gust 

front

• 915 MHz Profiler



Methodology/Data (continued)

Case 2: NOAA Physical Sciences Laboratory 

• Vertically-pointing S-band Precipitation Profiler Radar (~1:09 resolution)

• Surface Measurements(2 minute resolution)
• Surface observations (temperature, dewpoint, pressure, wind speed, wind direction)
• Derived thermodynamic calculations (potential temperature, equivalent potential 

temperature, virtual temperature, mixing ratio, etc.)
• Equivalent potential temperature derived following Bolton (1980)

• Derived perturbations for surface measurements following similar approach from Hutson et 
al. (2019) for thermodynamic variables

• 449 MHz Profiler
• Calculated average lapse rate (0-1 km) prior to QLCS passage

• Soundings (available from the Profiler Network Data & Image Library)
• Radar Wind Profiler, RASS, and Surface Meteorology Sounding 



Methodology/Data (continued)

NOAA NEXRAD Data Archive

• KHTX NEXRAD Level II Data 

Iowa State Mtarchive Database

• Hourly RUC/RAP model archived sounding data
• Obtained surface observations from Iowa State University IEM database and 

replaced sounding surface level temperature and dewpoint

• Calculated average lapse rate (0-1 km) prior to gust front passage for Case 1



Case 1 (XPR)
25 February 2011





KHSV RUC Model Sounding
SBCAPE 25.09 J/kg

SBCIN -72.83 J/kg

MUCAPE 102.15 J/kg

MUCIN -0.56 J/kg

MLCAPE 0 J/kg

MLCIN 0 J/kg

LCL 895.22 hPa; 12.71°C

LFC 711 hPa; 3.17°C

Shear (0-1 km) 60.34 kts

Shear (0-3 km) 69.17 kts

Shear (0-6 km) 74.69 kts

SRH (0-1 km) 1007.50 m2/s2

SRH (0-3 km) 1336.02 m2/s2

SRH (0-6 km) 1529.86 m2/s2

Lapse Rate (0-1 km; 
0200-0500 UTC)

9.24 °C/km

Storm Motion 44 kts (22.64 m/s)

Storm Motion Vector 271°



Bright band

Stratiform

Reflectivity core

Stratiform

Bright band

Attenuation Hole



4.5 km

6.6 km

18 m/s at 2.5 km

-19 m/s at 1.0 km



Increase in 
spectrum width

~3.6 m/s at 3.3 km 



Berm Surface Observations and Perturbations

ΔT: -4.5 °C

ΔP: +4 °C

Δ𝜃𝑒: -7 K
Δ𝜃𝑣: -7.99 K

90° wind shift

ΔWS: +11 m/s



Case 2 (S-band) 
22 March 2022





SBCAPE 174.13 J/kg

SBCIN -22.50 J/kg

MUCAPE 174.13 J/kg

MUCIN -22.50 J/kg

MLCAPE 88.96 J/kg

MLCIN -58.61 J/kg

LCL 872.04 hPa; 13.1°C

LFC 756 hPa; 7.41°C

Shear (0-1 km) 31.57 kts

Shear (0-3 km) 47.27  kts

Shear (0-6 km) 56.67 kts

SRH (0-1 km) 456.25 m2/s2

SRH (0-3 km) 567.44 m2/s2

SRH (0-6 km) 665.67 m2/s2

Lapse Rate (0-1 km; 
1800-2100 UTC)

8.57 °C/km

KMSL RAP Model Sounding

Storm Motion 60 kts (30.86 m/s)

Storm Motion Vector 196°



CTD Sounding



Bright band

Reflectivity core



8 km

2.7 km

10.64 m/s at 3.94 km

-18.59 m/s at 1.5 km



~11 m/s at 7.5 km

Increase in spectrum 
width associated with 
QLCS passage



CTD Surface Observations and Perturbations

Increase in pressure prior to decrease in 𝜃𝑒 and 𝜃𝑣

ΔP: +3 hPa

Δ𝜃𝑒: -8 K
Δ𝜃𝑣: -7 K

90° wind shift

ΔWS: +6 m/s

ΔT: -4 °C



Summary

• Maximum updraft confined to lowest 4 km 

• Maximum downdraft immediately adjacent to updraft due to 
precipitation offloading

• Increase in spectrum width with QLCS passage

•  Gust front observations
• Temperature decrease and pressure increase observed with passage of gust 

front 

• Decrease in both 𝜃𝑒 and 𝜃𝑣 observed 
• Pressure increase occurred slightly before 𝜃𝑒 and 𝜃𝑣 decrease

• Increase in wind speed and change in wind direction (90 degree wind shift)
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