Vertically-pointing Radar Observations of Convective Updrafts and Downdrafts Associated with Coolseason QLCSs over Northern Alabama

Melissa Gonzalez-Fuentes

The University of Alabama in Huntsville (UAH)

Department of Atmospheric and Earth Science

Severe Weather Institute – Radar and Lightning Laboratories (SWIRLL)

PERiLS Conference – Memphis, Tennessee

16 November 2023

Background

- Quasi-linear convective systems (QLCSs) are a relatively common occurrence in the southeastern US during the cool-season
- Storms often develop in high shear, low CAPE (HSLC) environments (Sherburn & Parker, 2014)
 - Surface-based CAPE \leq 500 J kg⁻¹
 - MUCAPE $\leq 1000 \text{ J kg}^{-1}$
 - 0-6 km shear \geq 18 m s⁻¹
- Can produce an array of severe weather
 - Tornadoes, damaging straight-line winds, lightning, and heavy precipitation

Research Objectives

- Determine thermodynamic and kinematic properties of cool-season QLCSs
 - May provide vital information on the kinematics of updrafts and downdrafts
 - Magnitude, width, height of updraft/downdraft
 - Location of maximum updraft/downdraft
- Potential differences between tornadic and nontornadic QLCSs
- Assess severity of QLCS (wind damage, lightning, tornadoes, hail, etc)
- Identify propagation mechanism (bore, density current, hybrid)
- Identify cold pool intensity and its relation to propagation speed
- Assess environmental and storm parameters

Methodology/Data

Case 1: UAH MAPNet

- X-band profiling radar (XPR; 6 Hz resolution)
- Berm Surface Data (5 second resolution)
 - Surface observations (temperature, dewpoint, pressure, wind speed, wind direction)
 - Derived thermodynamic calculations (potential temperature, equivalent potential temperature, virtual temperature, mixing ratio, etc.)
 - Equivalent potential temperature derived following Bolton (1980)
 - Derived perturbations for surface measurements following similar approach from Hutson et al. (2019) for thermodynamic variables
 - Averaged variable of interest over 15 minutes, at least for 5 minutes before passage of gust front
- 915 MHz Profiler

Methodology/Data (continued)

Case 2: NOAA Physical Sciences Laboratory

- Vertically-pointing S-band Precipitation Profiler Radar (~1:09 resolution)
- Surface Measurements(2 minute resolution)
 - Surface observations (temperature, dewpoint, pressure, wind speed, wind direction)
 - Derived thermodynamic calculations (potential temperature, equivalent potential temperature, virtual temperature, mixing ratio, etc.)
 - Equivalent potential temperature derived following Bolton (1980)
 - Derived perturbations for surface measurements following similar approach from Hutson et al. (2019) for thermodynamic variables
- 449 MHz Profiler
 - Calculated average lapse rate (0-1 km) prior to QLCS passage
- Soundings (available from the Profiler Network Data & Image Library)
 - Radar Wind Profiler, RASS, and Surface Meteorology Sounding

Methodology/Data (continued)

NOAA NEXRAD Data Archive

• KHTX NEXRAD Level II Data

Iowa State Mtarchive Database

- Hourly RUC/RAP model archived sounding data
 - Obtained surface observations from Iowa State University IEM database and replaced sounding surface level temperature and dewpoint
 - Calculated average lapse rate (0-1 km) prior to gust front passage for Case 1

Case 1 (XPR) 25 February 2011

- 50

- 40

- 60

- 10

- 20

KHSV RUC Model Sounding

Storm Motion	44 kts (22.64 m/s)
Storm Motion Vector	271°

SBCAPE	25.09 J/kg
SBCIN	-72.83 J/kg
Μυζαρε	102.15 J/kg
MUCIN	-0.56 J/kg
MLCAPE	0 J/kg
MLCIN	0 J/kg
LCL	895.22 hPa; 12.71°C
LFC	711 hPa; 3.17°C
Shear (0-1 km)	60.34 kts
Shear (0-3 km)	69.17 kts
Shear (0-6 km)	74.69 kts
SRH (0-1 km)	1007.50 m ² /s ²
SRH (0-3 km)	1336.02 m ² /s ²
SRH (0-6 km)	1529.86 m ² /s ²
Lapse Rate (0-1 km; 0200-0500 UTC)	9.24 °C/km

2011/02/25 XPR Reflectivity

2011/02/25 XPR Spectrum Width

Berm Surface Observations and Perturbations

Case 2 (S-band) 22 March 2022

KMSL RAP Model Sounding

Storm Motion	60 kts (30.86 m/s)
Storm Motion Vector	196°

SBCAPE	174.13 J/kg
SBCIN	-22.50 J/kg
Μυζαρε	174.13 J/kg
MUCIN	-22.50 J/kg
MLCAPE	88.96 J/kg
MLCIN	-58.61 J/kg
LCL	872.04 hPa; 13.1°C
LFC	756 hPa; 7.41°C
Shear (0-1 km)	31.57 kts
Shear (0-3 km)	47.27 kts
Shear (0-6 km)	56.67 kts
SRH (0-1 km)	456.25 m ² /s ²
SRH (0-3 km)	567.44 m ² /s ²
SRH (0-6 km)	665.67 m ² /s ²
Lapse Rate (0-1 km; 1800-2100 UTC)	8.57 °C/km

CTD Sounding

2022/03/22 S-band Radial Velocity

2022/03/22 S-band Spectrum Width

CTD Surface Observations and Perturbations

Summary

- Maximum updraft confined to lowest 4 km
- Maximum downdraft immediately adjacent to updraft due to precipitation offloading
- Increase in spectrum width with QLCS passage
- Gust front observations
 - Temperature decrease and pressure increase observed with passage of gust front
 - Decrease in both θ_e and θ_v observed
 - Pressure increase occurred slightly before θ_e and θ_v decrease
 - Increase in wind speed and change in wind direction (90 degree wind shift)

Acknowledgements

- NOAA Grant NA210AR4590323
- UAH MAPNet
- NOAA Physical Sciences Laboratory
- Kevin Knupp, Adam Weiner, Joshua Huggins, Matthew Starke, Preston Pangle

References

- Bolton, D., 1980: The Computation of Equivalent Potential Temperature. *Mon. Wea. Rev.*, **108**, 1046-1053, https://doi.org/10.1175/1520-0493(1980) 108<1046:TCOEPT>2.0.CO;2
- Hutson, A., C. Weiss, and G. Bryan, 2019: Using the Translation Speed and Vertical Structure of Gust Fronts to Infer Buoyancy Deficits within Thunderstorm Outflow. *Mon. Wea. Rev.*, **147**, 3575-3594, https://doi.org/10.1175/MWR-D-18-0439.1
- Sherburn, K. D., M. D. Parker, 2014: Climatology and Ingredients of Significant Severe Convection in High-Shear, Low-CAPE Environments. *Wea. Forecasting*, 29. 854-877, https://doi.org/10.1175/WAF-D-13-00041.1