A Detailed Examination of a High Shear, Low CAPE Mesovortex

Geoff Marion, Matthew Brown, Tom Galarneau, and Mike Coniglio

National Severe Storms Laboratory

Methodology

- CM1 simulation using PERiLS HSLC environment (30 March 2022)
- Simulation details:
 - 201x201x16 km domain
 - 100 m horizontal grid spacing
 - 30 m grid spacing in lowest 3 km

(Some) Key Findings

- 1. Updraft cores key to intensifying vortices
- 2. Shear effects/convergence along cold pool important for sustaining small, shallow vortices over long periods
- 3. Vortex feedbacks on system promote vortex-updraft alignment
- 4. Evidence points to variety of mechanisms responsible for vortex formation, maintenance, and intensification
 - HSI
 - Baroclinity (streamwise and crosswise)
 - Friction
 - Environment

Vertical Accelerations

Buoyancy Pressure $p'_B \propto -\frac{\partial(\bar{\rho}B)}{\partial z}$

Dynamics Pressure

Deformation tensor

 $\frac{\partial u_j}{\partial x_i}$

$$p'_D \propto e_{ij}^2 - \frac{1}{2} |\overrightarrow{\boldsymbol{\omega}}|^2 \qquad e_{ij}^2 = \frac{1}{4} \sum_{i=1}^3 \sum_{j=1}^3 \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_i}{\partial x_j} \right)$$

- Rotating updraft dynamic contributions to updraft dominant
 - Persistent updraft rotation aloft and cold pool near ground
- Relatively deep net upward acceleration

- Disorganized updraft
 - Shallower, weaker layer of net positive accelerations
 - Near-ground convergence along cold pool primarily drives upward motion

- Dynamic contributions to updraft dominant
 - Cold pool near ground and intermittent rotation aloft
- Strong downward acceleration above ~1 km due to lack of updraft rotation

Vortex-updraft alignment

Marion and Trapp 2020, Fig. 9

Vortex Motion

Meridional Accelerations

t = 150 min

t = 159 min

Vortex-updraft alignment

Parcel trajectories

- Initialized every 10 min
- Parcels that enter the lowest 100 m of vortex
- Differences in sources/source regions throughout lifetime

Vorticity Sources - Examples

Formation - HSI

Maintenance – TW03

Ongoing and Future Work

- Matthew Brown (NSSL): impact of low-level hodograph curvature on draft, mesovortex production
- Revisiting the Trapp and Weisman (2003) mechanism
 - The role of planetary vorticity and hodograph curvature on cyclonic/anticyclonic vortex production
- Understanding dynamical differences between high-tomoderate and low-CAPE QLCSs

Brown et al., submitted to MWR