

KBMX Event 3 4/5/22 1514 UTC

KLZK Event 5 3/3/23 0843 UTC

CAPE/Shear Space for each Event

Texas Tech StickNet Near-Mesovortex Observations during PERiLS

Joshua Ostaszewski and Christopher Weiss

Ostaszewski J. S., and C. C. Weiss, 2023: Surface Cold Pool Observations near Tornadic and Nontornadic QLCS Mesovortices during PERiLS. *In Prep.*

Acknowledgements: Jessica McDonald, TTU PhD Candidate

Alex Schueth, TTU PhD Candidate

Kelcy Brunner, TTU Postdoc

- McDonald and Weiss 2021 found during the VORTEX-SE field project that the strongest horizontal θ_v gradients were near tornadic portions of the QLCS
 - Greater relative baroclinity near rotation
 - A *possible* source of vorticity for tornadogenesis through the implied baroclinic vorticity generation
 - Same correlation not found in the deficits
 - Contradicts supercell cold pool studies
- 1. Do similar thermodynamic gradient and deficit findings from McDonald and Weiss (2021) translate to the QLCSs observed during PERiLS?
- 2. How do thermodynamic gradients and deficits change north vs. south of a mesovortex?
- 3. Are thermodynamic gradients and deficits near tornadic mesovortices dependent on the time relative to the tornado occurring?
- 4. Do supercells in HSLC environments have weaker overall cold pools?
- 5. What are the differences in cold pool characteristics of 'hybrid mesovortices' that are attributed to supercell-QLCS mergers?

Correlation between Horizontal Baroclinic Vorticity Generation and Tornado likelihood

McDonald and Weiss 2021 (Fig.8)

PERiLS Overview and StickNet Intercept Totals

166 total cold pool intercepts! 142 HSLC intercepts!

Year One							Year Two					Y1+Y2			
Storm Mode	IOP1	IOP2	IOP3	IOP4	TOTAL	Storm Mode	IOP1	IOP2	IOP3	IOP4	IOP5	TOTAL	Storm Mode	TOTAL	
Linear: NR	1	0	5	6	12	Linear: NR	0	11	0	0	0	11	Linear: NR	23	
Linear: MV	3	22	11	16	52	Linear: MV	0	4	0	0	20	24	Linear: MV	76	*56 HSLC MVs
MC	6	0	1	0	7	MC	0	0	0	28	0	28	MC	35	
Mixed	16	0	2	0	18	Mixed	0	0	0	0	0	0	Mixed	18	
Hybrid	4	2	4	0	10	Hybrid	0	0	0	0	4	4	Hybrid	14	*10 HSLC H
Rotating Storms	IOP1	IOP2	IOP3	IOP4	TOTAL	Rotating Storms	IOP1	IOP2	IOP3	IOP4	IOP5	TOTAL	Rotating Storms	TOTAL	
MV-NT	2	12	11	4	29	MV-NT	0	4	0	0	20	24	MV-NT	53	*33 HSLC NT MVs
MV-TOT	1	10	0	3	14	MV-TOT	0	0	0	0	0	0	MV-TOT	14	
MV-PRE	0	0	0	1	1	MV-PRE	0	0	0	0	0	0	MV-PRE	1	
MV-POST	0	0	0	8	8	MV-POST	0	0	0	0	0	0	MV-POST	8	
MC-NT	4	0	1	0	5	MC-NT	0	0	0	27	0	27	MC-NT	32	
MC-TOT	1	0	0	0	1	MC-TOT	0	0	0	1	0	1	MC-TOT	2	
MC-PRE	0	0	0	0	0	MC-PRE	0	0	0	0	0	0	MC-PRE	0	
MC-POST	1	0	0	0	1	MC-POST	0	0	0	0	0	0	MC-POST	1	
Mixed-NT	4	0	2	0	6	Mixed-NT	0	0	0	0	0	0	Mixed-NT	6	
Mixed-TOT	10	0	0	0	10	Mixed-TOT	0	0	0	0	0	0	Mixed-TOT	10	
Mixed-PRE	1	0	0	0	1	Mixed-PRE	0	0	0	0	0	0	Mixed-PRE	1	
Mixed-POST	1	0	0	0	1	Mixed-POST	0	0	0	0	0	0	Mixed-POST	1	
Hybrid-NT	3	0	1	0	4	Hybrid-NT	0	0	0	0	4	4	Hybrid-NT	8	*4 HSLC NT H
Hybrid-TOT	0	1	1	0	2	Hybrid-TOT	0	0	0	0	0	0	Hybrid-TOT	2	
Hybrid-PRE	0	1	2	0	3	Hybrid-PRE	0	0	0	0	0	0	Hybrid-PRE	3	
Hybrid-POST	1	0	0	0	1	Hybrid-POST	0	0	0	0	0	0	Hybrid-POST	1	

*Does not include the 17 NT MCs from IOP2 and the 26 NT MCs from IOP3 due to not being HSLC

StickNet Intercept Definition

A StickNet intercept is deemed near rotation if a collocation of a radial velocity couplet and inferred vorticity > 0.01 s⁻¹ occurred within a <u>15 km radius of the probe</u>

*Used the closest WSR-88D

r :radial distance from the radar φ :radar zenith angle V_r : radar radial velocity field θ : radar azimuth

Characterization of Cold Pools

22 Mar 2022, 101A — 19:28 UTC U: 19.7 m/s. V: 27.1 m/ 10.21 LITC - 359.5 314.6 269.6 224.7 . 179.7 <mark>₩</mark> ► 134.8 89.9 44.9 MSE: 2.7 ISE: 93.3 -60 -75 -70 -65 -60 -55 -80 -75 -70 -65 -55 E/W distance from Radar [km

Identify cold pool TOA

A one-minute decrease in θ_v of 0.3 K, 0.2 K, or 0.1 K that occurs over at least two consecutive minutes

Calculate Storm Motions

Two ref scans are interpolated on a 1 km grid, subset to a 30 km box, and the first scan is shifted to the next to find the exact orientation that minimizes the MSE

Calculate Base State and Deficits

BS: Time-to-space conversions then averaging 10-15 km before TOA. Deficits: Subtract BS from minimum found within 15 km of the cold pool

Storm Mode Types

- Linear-NR: Non-rotating segments of QLCS
- Mesovortex (MV): Embedded
 circulation along leading edge of
 QLCS
- **Hybrid** (**H**): MV with part of circulation attributed and traced back from MC/QLCS merger upstream
- Mesocyclone (MC): Discrete circulation clearly separated from QLCS
- Mixed (M): Sampled QLCS with a MC within 15 km. Unable to separate cold pools

Tornadic Intercepts

Time of Tornado: Tornado occurred within 15 km of a probe **Pre-Tornadic:** Tornado occurred >15 km radius, -30 mins of TOA **Post-Tornadic:** Tornado occurred >15 km radius, +30 mins of TOA

Hybrid Mesovortex Intercepts

dr

b

e

106A

- -Correlation between deficits and Tdd similar to other cold pool studies
- -Supercells have weaker cold pools

-Cold pool properties are weakened closest to time-of-

merger

106A

105A

Rotating vs Non-rotating

Tornadic vs Nontornadic

	# Samples	Mean	Median	Std	Cov (TE')	Cov (TV')	r (TE')	r (TV')
Linear-NR	23	-0.414	-0.35	0.228	0.429	0.192	0.761	0.839
MV-R	76	-2.355	-2.1	1.294	3.336	1.958	0.645	0.767
MC-R	35	-1.161	-0.68	1.04	1.145	0.347	0.28	0.21
Mixed-R	18	-1.803	-1.7	0.766	1.323	0.82	0.733	0.72
Hybrid-R	14	-1.851	-1.935	1.213	4.879	2.987	0.893	0.925

	# Samples	Mean	Median	Std	Cov (TE')	Cov (TV')	r (TE')	r (TV')
MV-T	23	-2.34	-2.21	1.19	1.139	1.182	0.427	0.634
MV-NT	53	-2.361	-1.97	1.335	4.321	2.322	0.716	0.809
MC-T	3	-1.45	-2	0.871	0.359	0.211	0.998	0.655
MC-NT	32	-1.134	-0.68	1.051	1.321	0.412	0.313	0.246
Mixed-T	12	-1.84	-1.635	0.529	0.08	0.066	0.24	0.257
Mixed-NT	6	-1.728	-1.965	1.092	4.129	2.524	0.946	0.924
Hybrid-T	6	-1.165	-1.015	0.999	4.835	2.315	0.926	0.99
Hybrid-NT	8	-2.366	-2.74	1.099	3.428	2.153	0.841	0.847

Time-Relative to Tornado

	# Samples	Mean	Median	Std	Cov (TE')	Cov (TV')	r (TE')	r (TV')
MV-TOT	14	-1.735	-1.47	0.827	0.237	0.061	0.124	0.083
MV-PRE	1	-3	-3					
MV-POST	8	-3.323	-2.95	1.114	0.348	0.658	0.226	0.512
MC-TOT	2	-1.175	-1.175					
MC-PRE	0							
MC-POST	1	-2	-2					
Mixed-TOT	10	-1.684	-1.6	0.336	0.042	0.056	0.253	0.504
Mixed-PRE	1	-2	-2					
Mixed-POST	1	-3.24	-3.24					
Hybrid-TOT	2	-1.04	-1.04					
Hybrid-PRE	3	-0.767	-0.36	0.64	2.932	1.281	0.986	0.983
Hybrid-POST	1	-2.61	-2.61					

-Lack of pre-tornadic mesovortex intercepts

-No pre-mesovortex intercepts

-Strongest baroclinic zones occurred near posttornadic intercepts, although, how did these baroclinic zones evolve to this state?

Directionality

Nontornadic Samples

Tornadic Samples

	# Samples	Mean	Median	Std	Cov (TE')	Cov (TV')	r (TE')	r (TV')
MV-NT-N	23	-2.04	-1.97	0.998	3.326	1.578	0.726	0.748
MV-NT-S	30	-2.607	-2.035	1.498	5.404	2.977	0.784	0.883
MC-NT-N	9	-0.828	-0.47	0.744	1.239	0.442	0.528	0.49
MC-NT-S	23	-1.25	-0.82	1.128	1.146	0.322	0.239	0.167
Mixed-NT-N	6	-1.728	-1.965	1.092	4.129	2.524	0.95	0.924
Mixed-NT-S	0							
Hybrid-NT-N	3	-1.61	-0.72	1.301	4.497	1.822	0.996	0.886
Hybrid-NT-S	5	-2.82	-2.75	0.605	2.27	1.033	0.901	0.962

	# Samples	Mean	Median	Std	Cov (TE')	Cov (TV')	r (TE')	r (TV')
MV-T-N	12	-2.749	-2.605	1.468	1.382	1.455	0.353	0.583
MV-T-S	11	-1.898	-2.2	0.503	0.322	0.422	0.405	0.674
MC-T-N	0							
MC-T-S	3	-1.45	-2	0.871	0.359	0.211	0.998	0.655
Mixed-T-N	12	-1.84	-1.635	0.529	0.08	0.066	0.24	0.257
Mixed-T-S	0							
Hybrid-T-N	4	-1.263	-1.22	1.106	6.729	3.235	0.885	1
Hybrid-T-S	2	-0.97	-0.97					

c)

f)

102 110 213

Post-Tornadic MV

1-Min Ambient Surface Wi

All MV intercepts

- 200

|θ_v′| (K)

×

Conclusions

- 1. <u>Greater baroclinity</u> found near rotating segments than the parent QLCS
- 2. <u>Preferential baroclinic zones</u> evolve during an **already present** MV lifecycle
- HSLC supercell cold pools are <u>weaker</u> than supercells in larger buoyancy environments, and supercells leading a QLCS <u>tend to weaken the immediate</u> <u>cold pool</u> when absorbed by the QLCS (i.e., hybrid MV)

Challenges

- 1. No pre-mesovortex/-tornadic samples
- 2. No parcel trajectories (lack of dual Doppler)
- 3. Only surface measurements. What is happening just above (~lowest 100 m)?
- Baroclinity present but cannot discredit other vorticity sources simultaneously present

Future Work

- 1. Explore frictional and barotropic effects
- 2. Assess rapid destabilization within the StesoNet
- 3. Add a modeling component to explore how much baroclinic vorticity is important during and downstream of HSLC QLCS-supercell mergers