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Shallow Vortices
• QLCS vortices can be shallow and thus 

can appear quickly on radar
• Developing below the lowest radar 

scans and between sweeps
• Significant drop in POD farther from 

radar sites (Brotzge et al. 2013)
• Beam is higher above the surface 

and data is less detailed (Davis & 
Parker 2014)

• However, deep convection still 
important
• Updrafts and downdrafts vital for 

vorticity generation 
(tilting/stretching)

Illustration of radar beam height/width and QLCS vortex depth 
as distance from the radar increases



3

Updrafts Shown By OTs

Tracked OTs, NCEI tornado tracks, and MRMS 
rotation swaths. Color denotes OT probability

• Past work has shown links between updrafts 
and mesovortices or mesocyclones
• Updrafts observed using overshooting tops 

(OTs)
• Idea: Identifying deep updrafts could reveal 

regions of the QLCS conducive for genesis and 
maintenance of vortices

• Case Study: PERiLS 2022 IOP 2
• OTs line up well with tornado tracks (where 

OTs occur)
• No OTs detected north of approximately 32° N
• Why?
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Limitations to OTs

• Found that OT development is dependent on CAPE
• Especially the vertical extent of positive buoyancy
• Lower equilibrium levels and less CAPE result in shallower, 

weaker updrafts that do not reach the tropopause
• This is what is seen in the northern portion of the 

QLCS

RAP 13 km analysis surface-based CAPE

Soundings from KILX (left) and a PERiLS team 
farther north along the QLCS (right)
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Updrafts Shown By Radar

• Composite radar data were obtained using the NSSL’s 
Multi-Radar Multi-Sensor viewer

• Specifically:
• 9 km AGL constant height reflectivity

• This level was chosen as it was just below the 
equilibrium level on the nearest NWS sounding 
(theoretically the top of any deep updrafts)

• Reflectivity cores are defined as areas of 
reflectivity greater than 25 dBZ

• Only cores associated with the QLCS are 
recorded

• All values and locations manually recorded from the 
NSSL viewer

9 km AGL composite reflectivity shown in the 
NSSL MRMS data viewer

9 km AGL Reflectivity
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Updrafts Shown By Radar

Tracked MRMS 9 km reflectivity cores, NCEI tornado tracks, 
and MRMS rotation swaths. Color indicates max reflectivity of 

the core at 9 km

• Similar to OTs, 501 reflectivity cores (obtained 
at 10 minute intervals) are plotted alongside 
tornado tracks

• Spacing and orientation very similar to tornado 
tracks

• Unlike OTs, reflectivity cores appear as far 
north as the northernmost tornado tracks

• Nearly every QLCS tornado track is spatially 
correlated to a series of reflectivity cores

• Reflectivity cores are often visible well before 
tornadoes occur
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WRF Modeling

(Left) RAP 13 km analysis of 1 km AGL reflectivity and (right) WRF 3 km parent 
domain simulation of 1 km AGL reflectivity; both at 1:00 UTC

• Wanted to understand the 
physical link between 
these updrafts and the co-
located vortices

• Ran a 3 km grid spacing 
WRF simulation with a 1 
km nested grid

• Produced a QLCS similar to 
the observed system
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Do Mesovortices Form Updrafts?

• First question: does a pre-existing 
vortex result in deep updrafts? (No)

• Evaluating updraft forcings shows that, 
prior to “tornadogenesis”, the parent 
mesovortex has minimal impact on 
vertical motions

• Greater forcing occurs later after vortex 
intensifies
• Could contribute to low-level 

intensification of vertical motions, 
would suppress deep updrafts

Cross sections at the vortex just prior to “tornadogenesis”; 
vertical velocity (black) and Okubo-Weiss parameter (magenta) 

are contoured

Vertical Rotation-Induced Forcing Horizontal Convergence-Induced Forcing

00:35 UTC



9

Do Updrafts Form Mesovortices?

• Next question: does a pre-existing 
updraft result in strong vortices? 
(Yes)

• Parcel trajectories terminating in the 
mesovortex originate largely in the 
environmental inflow
• These parcels ascend as they 

reach the vortex/updraft
• Only attain vorticity once ascent 

occurs
• Tilting/stretching by the updraft 

appears responsible for vorticity 
generation

Heights (left) and absolute 
vorticity (right) for parcels 
entering the vortex

Parcel trajectory paths 
colored by height and 

mesovortex location (pink)
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Conclusions

Heights (left) and parcel paths (right) for parcels making up the updraft at 9 km 
(gray) and other 9 km parcels (orange/blue)

• Many QLCS updrafts are deep enough to be observed on upper-tropospheric radar sweeps
• Data that is available for a much larger portion of the country than low levels

• Locations of these deep updrafts indicate where conditions are favorable for vortex formation

• Deep updrafts appear to be an 
important precursor to vortex 
formation (necessary but 
insufficient condition)

• Main takeaway: QLCS 
research often focuses on low 
levels (with good reason), but 
evidence of surface processes 
are also apparent aloft
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Future Work

• Future work will expand this analysis to a larger number of events and make use of idealized 
simulations
• Are these signatures always apparent? If not, what constrains them?
• Do signatures aloft vary based upon the mesovortex genesis mechanism?
• What can the width, intensity, and longevity of reflectivity cores tell us?

Funding provided by NSF AGS 2020462

Thank You!
Questions?
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