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ABSTRACT

The difficulty of representing high rainfall variability overmountainous areas using ground-based sensors is

an open problem in hydrometeorology. Observations from locally deployed dual-polarization X-band radar

have the advantage of providingmultiparametermeasurements near ground that carry significant information

useful for estimating drop size distribution (DSD) and surface rainfall rate. Although thesemeasurements are

at fine spatiotemporal scale and are less inhibited by complex topography than operational radar network

observations, uncertainties in their estimates necessitate error characterization based upon in situ mea-

surements. During November 2015–February 2016, a dual-polarized Doppler on Wheels (DOW) X-band

radar was deployed on the Olympic Peninsula of Washington State as part of NASA’s Olympic Mountain

Experiment (OLYMPEX). In this study, rain gauges and disdrometers from a dense network positioned

within 40 km of DOW are used to evaluate the self-consistency and accuracy of the attenuation and bright-

band/vertical profile corrections, and rain microphysics estimation by SCOP-ME, an algorithm that uses

optimal parameterization and best-fitted functions of specific attenuation coefficients and DSD parameters

with radar polarimetric measurements. In addition, the SCOP-ME precipitation microphysical retrievals of

median volume diameter D0 and normalized intercept parameter NW are evaluated against corresponding

parameters derived from the in situ disdrometer spectra observations.

1. Introduction

To understand and manage water systems under a

changing climate andmeet increasing demand for water,

a quantitative understanding of the precipitation vari-

ability at a regional to global scale is important. Over

complex terrain, in particular, extreme precipitation is

the main trigger of natural hazards like floods, land-

slides, and avalanches and its variability would affect

freshwater security, energy, and tourism activities.

Nevertheless, the measurement of precipitation over

these regions has been very difficult; hence, advancing

estimation of global precipitation over complex terrain

is vitally important for the society.

Rainfall measurements are available from ground-

based observations (such as rain gauge and radar net-

works) and in recent years from satellite sensors. While

rain gauges provide direct physical measurement of

surface rainfall, the sparseness of gauge networks over

mountainous regions limits spatial representation of

rainfall variability from these measurements. The dif-

ficulty of representing spatial rainfall variability from

ground-based observations highlights the need to use

multisatellite precipitation datasets—that is, datasets

that combine infrared (IR) radiances and passive mi-

crowave (PMW) precipitation retrievals—which can

represent the space–time variability of rainfall with
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quasi-global coverage (Huffman et al. 2007, 2010; Joyce

et al. 2004; Kubota et al. 2007; Ushio et al. 2009).

However, the effective use of satellite-based precipita-

tion products requires a thorough understanding of the

error characteristics of the individual PMW sensor re-

trievals at their native resolution. Evaluation of the

satellite sensor retrievals at such high spatiotemporal

scale cannot be based on rain gauges, since rain gauge

measurements are constrained by mismatch in spatial

scale with the PMW field of view area. Ground radar

observations, on the other hand, provide high-resolution

information on the spatial and temporal variability of

precipitation. However, radar quantitative precipitation

estimation (QPE) accuracy over complex terrain is af-

fected by beam blockage when the radar is close to a

mountain range or by the height of the beam and the

width of the sampling volumewhen the radar is far away.

To overcome these limitations, locally deployed low-

power polarimetric X-band radars are used to fill gaps in

radar networks (Maki et al. 2010).

The use of locally deployed X-band polarimetric ra-

dars has many advantages compared to operational S

and C band radars. Although the range of low-power

X-band radar systems is relatively short, their small size,

mobility, higher spatial and temporal resolution, and

stronger differential phase signals make them a conve-

nient tool for hydrometeorological studies over complex

terrain or regions that lack adequate coverage by the

operational weather radar networks (Brotzge et al. 2006;

Matrosov et al. 2005). Moreover, short-wavelength ra-

dars can monitor rainfall variability at smaller scales

and are potentially more accurate than the longer-

wavelength radars (Anagnostou et al. 2009, 2010, 2018;

Koffi et al. 2014; Maki et al. 2010; Matrosov et al. 1999,

2013; McLaughlin et al. 2009; Yoshikawa et al. 2010;

Wang and Chandrasekar 2010). As with any high-

resolution reference dataset, X-band polarimetric ra-

dar observations require comprehensive evaluation

to demonstrate they can be reliably used for evalua-

tion purposes where you consider ground radar as

ground truth.

The attenuation of the radar signal at X-band is sig-

nificantly stronger than S and C bands hence these

radars are unreliable unless they have polarimetric

capabilities. The introduction of polarimetric methods

(in particular differential phase shift fDP in degrees)

has solved the problem of limited QPE from X-band

radars due to power signal attenuation (Kim et al. 2008,

2010; Matrosov et al. 1999, 2002, 2006; Park et al.

2005a,b; Anagnostou et al. 2004; Testud et al. 2000).

The immunity of fDP to attenuation from rainfall, or

other atmospheric sources, and its independence to radar

calibration, make QPE using fDP a powerful method

(E. N. Anagnostou et al. 2006; M. N. Anagnostou et al.

2006; Bringi and Chandrasekar 2001; Chandrasekar et al.

1990; Matrosov et al. 2002, 2005; Testud et al. 2000).

Recent studies by Anagnostou et al. (2009, 2010) and

Kalogiros et al. (2013a) have led to the development and

demonstration of a new algorithm for attenuation cor-

rection and rain rate and rain drop size distribution

parameter estimation that is based on dual-polarization

measurements. Kalogiros et al. (2013a,b) showed that

their algorithm, which is the self-consistent with opti-

mal parameterization attenuation correction and rain

microphysics estimation (SCOP-ME), can provide im-

proved estimates of rain rate and drop size distribution

(DSD) parameters. In light of all these advances and

advantages, X-band radars and algorithms can play a

significant role in the validation of satellite rainfall

products (Derin et al. 2018; Chandrasekar et al. 2008).

Over the past two decades, tests and validations

conducted with locally deployed X-band radars during

field campaigns have shown the effectiveness of these

measurements for rainfall parameter retrievals at high

temporal and spatial resolutions (Matrosov et al. 2002,

2005; Anagnostou et al. 2004, 2007, 2010, 2018; Houze

et al. 2017; Barros et al. 2014; Chandrasekar et al. 2012;

Kim and Maki 2012; Chen et al. 2017; Shi et al. 2018;

Mishra et al. 2016; Testud et al. 2007; Thurai et al.

2017). A recent ground validation field campaign—the

Olympic Mountains Experiment (OLYMPEX)—was

carried out to obtain an understanding of orographic

modification of frontal precipitation processes and to

satisfy the need for further development and refine-

ment of algorithms used to convert Global Precipitation

Measurement (GPM)mission satellite measurements to

precipitation amounts in midlatitudes. The OLYMPEX

campaign involved a wide variety of ground instru-

mentation, including three state-of-the-art scanning

dual-polarization Doppler radars: the NASA dual-

polarization S-band radar (NPOL) and the NASA

dual-frequency (Ku/Ka band) dual-polarization Dopp-

ler (D3R) radar, both located near the coast, and the

National Science Foundation (NSF) X-bandDoppler on

Wheels (DOW) radar (Petersen et al. 2018). Because of

its blockage by terrain, the NPOL beam did not sample

the valley at low levels. The DOW X-band radar was

deployed within the valley to fill the gap and extend

the dual-polarization radar coverage below the NPOL

beam, down nearly to the valley ground level (Houze

et al. 2017).

To the best of our knowledge, evaluation of DOW

radar rainfall measurements from the OLYMPEX

campaign have not yet been carried out, and gener-

ally, very few studies (Yu et al. 2018; Lim et al. 2013;

Anagnostou et al. 2009, 2010) address the verification
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of X-band dual-polarization rainfall retrievals in com-

plex terrain. This study presents the microphysical re-

trieval application on the DOW measurements—the

SCOP-ME algorithm— and evaluation of rainfall and

microphysical parameters against in situ observations

from disdrometers, rain gauges, and a micro rain radar

(MRR) available within 30-km range from the radar.

The aim of this study is to quantify the error of the

SCOP-ME retrieval applied on the DOW measure-

ments, so that these data are properly applied in vali-

dation studies of PMW precipitation estimates over

this complex terrain.

The paper is organized as follows: section 2 provides

the details of the study region and datasets, while the

evaluation methodology is presented in section 3. The

results are discussed in section 4, and section 5 provides

a discussion and section 6 summarizes our conclu-

sions and offers recommendations for future research

directions.

2. Study region and datasets

a. Study region

The GPM Ground Validation field campaigns have

used a variety ofmethods to validate satellite constellation

measurements with surface rainfall measured by dense

rain gauge and disdrometer networks at various sites. One

such campaign was OLYMPEX, which was conducted

in the Pacific Northwest. The goal of OLYMPEXwas to

validate rain and snow measurements in midlatitude

frontal systems as they moved from ocean to coast to

mountains and determine how remotely sensed mea-

surements of precipitation byGPMcould be applied to a

range of hydrological, weather forecasting, and climate

data. The campaign involved a wide variety of ground

instrumentation, including several radars, and airborne

instrumentation monitoring oceanic storm systems as

they approached and traversed the Peninsula and the

Olympic Mountains.

Figure 1 shows the terrain of the Olympic moun-

tain range, which occupies the Olympic Peninsula of

Washington State. The peninsula has a north–south

coastline on the Pacific Ocean and is separated from

Canada’s Vancouver Island on its north side by the

narrow Strait of Juan de Fuca.

b. Datasets

All the datasets that are used in this study were

downloaded fromGlobal Hydrology Resource Center

(GHRC) Distributed Active Archive Center (DAAC).

These data are summarized below.

The DOW radar was deployed in the Chehalis Val-

ley (47.488N, 123.868W; Fig. 1) on the shore of Lake

Quinault, Washington, to obtain radar observations of

rainfall; the goal was to gain a better understanding of

the orographic enhancement of rainfall during frontal

passages over mountain ranges. The DOW, which is

a mobile dual-polarization and dual-frequency X-band

radar, was operated by the Center for Severe Weather

Research (CSWR). Rapidly deployable, it has dual

FIG. 1. Topographic map of the study region—the OLYMPEX campaign. The solid circles on the map represent in situ collocated gauges

and APU disdrometers.
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250-kW transmitters for high sensitivity to clear radar

returns and can be set in place for long-term moni-

toring of storm systems. The X-band, 3.2-cm wave-

length, 9.4-GHz transmissions can penetrate through

intense precipitation conditions and return moderately

high-resolution horizontal and vertical polarization re-

flectivity at an operational range of nearly 60 km (Houze

et al. 2017). Both RHI and sector PPI measurements

were conducted during OLYMPEX. RHIs contained

scans at 22 different azimuths, between 50.48 and 71.48.
Sector PPIs contained scans at six elevations between

2.88 and 11.08 (approximately 2.88, 38, 58, 78, 98, and 118).
Additional information regarding the instrument char-

acteristics and their properties can be found in Tables 1

and 2. Four in situ stations were within the sampling area

of DOW. It should be noted that version 2 DOW data

have been created after discovering the discrepancy

between DOW and NPOL. A new and more appro-

priate calibration method has been applied (Houze

et al. 2018), and in this study DOW version 2 has been

used, which was downloaded from GHRC DAAC.

TheMRR used in this study, is a Biral/Metek 24-GHz

(K band), vertically pointing, frequency-modulated

continuous-wave (FM-CW) radar. MRRmeasures the

signal backscatter from which Doppler spectra, radar

reflectivity, Doppler velocity, and rainfall parameters

including drop size distribution, rain rate, liquid water

content, and rain-path-integrated attenuation are de-

rived (Petersen andGatlin 2017). To be able to compare

MRR with DOW scans, volumetric matching method-

ology has been applied by a weighted mean estimator,

with the weighting function given by the antenna pattern

at 6 dB.

The Met One Rain Gauge Pairs are tipping-bucket

precipitation gauges that collect precipitation amounts

and calculate rain rates (Petersen et al. 2017a). The

Model 380 series precipitation gauge is a tipping-bucket

rain gauge that measures the amount of fallen precipi-

tation. The gauge has a 30.5-cm (12 in.) diameter

catchment funnel that directs precipitation to a tipping-

bucket assembly. When 0.254mm of precipitation has

been collected, the assembly tips, draining the collec-

tion and activating a mercury switch for recording data.

Two gauges were located on each platform. Quasi-

continuous time series of minutely (1-min) rain rate

with a unit of millimeters per hour (mmh21) were

downloaded from GHRC DAAC, in which a cubic-

spline algorithm was used to interpolate the measured

gauge data (Petersen et al. 2017a).

The Autonomous Parsivel Unit (APU) is an optical

laser disdrometer based on single particle extinction that

measures particle size and fall velocity. The precipita-

tion data provided by the resulting APU dataset include

precipitation rate, reflectivity in Rayleigh regime, liquid

water content, mean drop diameter, and drop concen-

tration (Petersen et al. 2017b), which can be downloaded

from GHRC DAAC. Four APU sites were located

within the DOW field of view; their properties are shown

in Table 2. All four in situ sites had collocated gauge

and disdrometer instruments, and one of the four had

the MRR instrument.

c. X-band radar rainfall estimation algorithm

This section describes the microphysical algorithm

(named SCOP-ME; Kalogiros et al. 2013a) that was

applied to the DOW X-band radar observations. The

SCOP-ME polarimetric rainfall and microphysics al-

gorithm was developed from T-matrix simulations at X

band, based on Rayleigh scattering limit relations, with

the addition of a rational polynomial dependence

on reflectivity-weighted droplet diameter DZ due to

Mie scattering effects. The algorithm is based on the

TABLE 1. DOW and MRR properties.

Radar Location Frequency Elevation (m) Beamwidth (8) Range (km) Scanning mode

DOW Lake Quinault X band 75 0.95 59.96 RHI sectors up-valley interspersed with

low-level PPIs

MRR Bishop Field K band 87 2.0 Vertically pointing

TABLE 2. In situ stations and instrument properties.

Beam height (m) Instruments

Range from

DOW (km) Low angles High angles Station elevation

APU

disdrometer MRR

Dual (D) or

single (S) rain gauge

1st station 4.65 302, 304 613, 905, 925 64.9 x D

2nd station 5.34 320, 340 703, 882, 1058 86.9 x x D

3rd station 14 830, 875 1934, 2460, 3022 115.8 x S

4th station 23 2240, 2380 5320, 6830, 8330 180.8 x S
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assumption that a gamma distribution model could

adequately describe the shape of drop size distribution.

SCOP-ME is a self-consistent polarimetric algorithm,

based on the parameterizations of the specific attenu-

ation coefficients and backscattering phase shift in the

rain, derived by Kalogiros et al. (2013a), and applied

with an iterative scheme to each radar ray. Attenuation

correction based on SCOP-ME parameterization of

specific attenuation coefficients is applied with an it-

erative scheme to separate radar rays (Kalogiros et al.

2014). This attenuation correction procedure has been

evaluated against in situ disdrometers and rain gauge

datasets in past studies (Kalogiros et al. 2013a,b, 2014)

and has shown that the it is more efficient than previous

polarimetric attenuation correction algorithms (Testud

et al. 2000; Gorgucci et al. 2006). Before applying this

precipitation retrieval algorithm, the DOW reflectivity

observations were corrected for partial beam blockage

and measurement biases. For beam blockage estima-

tion high-resolution terrain information and a three-

dimensional model of the radar beamwas applied. This

information is used to exclude highly occluded areas

from further processing, or to correct reflectivity from

areas with occlusion below 50%. In addition, after the

application of the attenuation correction and the vertical

profile of reflectivity (VPR) measurements, the rainfall

estimates in PPI scans were corrected using the method

described in Kalogiros et al. (2014). This method is based

on the detection of the melting layer using the copolar

correlation coefficient measurement, which presents a

characteristic minimum in that layer, and an estimate

of the scan average of a properly scaled apparent ver-

tical profile without the use of climatological or local

radiosonde information. It is noted that the attenuation

correction is applied only to heights below the melting

layer,while in andabove themelting layer it is kept constant

in each ray. A summary of the SCOP-ME algorithm is

provided in the appendix.

It is stated in Houze et al. (2018) that DOW version

2 data have undergone vigorous quality control. They

found an offset in the measured differential reflectivity

distribution due to inconsistencies in the transmitters.

The offset values were determined by creating histo-

grams of measured differential reflectivity for each scan

while omitting values based on known inconsistencies

in the transmitters. The values that were omitted based

on known inconsistencies are measured differential re-

flectivity values with an equivalent reflectivity factor

from the horizontal channel lower than 10dBZ, mea-

sured differential reflectivity values with a correlation

coefficient between the horizontal and vertical channels

less than 0.97 or greater than 1.0, and measured differ-

ential reflectivity values which fell within 1.2–2.2 km

of the DOW range. The peak of the normal distribution

of the measured differential reflectivity histograms was

used as the offset for the scan. Abnormally high or low

values were omitted from the dataset. When no offset

could be determined, a default offset of 0 dB was used.

As a result, an offset estimate of 3.2 (61) dB, with the

DOW being too low was found based on this method.

This offset of 13.2dB was then added to the version

2 dataset. It has been noted in Houze et al. (2018) that

in the error estimate, variations between receiver cali-

brations were also considered (varying up to 1dB, but

typically less). The caveat to this offset is that it does not

necessarily hold in melting levels, where Mie scattering

becomes an issue, or values greater than 35dBZ. The

offset was still applied in these scenarios, but these caveats

are kept in mind when analyzing the SCOP-ME retrieval.

The clutter-filtered and calibrated ZH, ZDR, rHV, and

fDP parameters, provided by the DOW version 2 data-

set, were passed through our algorithm for further dy-

namic calibration. The bias calibration of ZH and ZDR

was conducted by comparing these measurements to

reference radar parameters determined using scattering

(T-matrix) routines applied on the raindrop spectral

measurements from the disdrometers deployed in the

study area. The lowest available (unoccluded) antenna

elevation (2.88) was used for this comparison since

DOW observations at this elevation are closest in alti-

tude to the disdrometers and there is no significant beam

blockage or ground clutter affecting its measurements.

The mean reflectivity bias determined from this process

was insignificant, which verifies the calibration offset

adjustment applied in DOW version 2 dataset. This

aspect was also confirmed by the internal consistency

check of the SCOP-ME algorithm described in detail

by Kalogiros et al. (2014). The consistency check com-

pares the differential phase shift fDP (in degrees) de-

rived by the attenuation-corrected horizontal reflectivity

to the measured differential phase shift. The adjustment

of ZDR was performed in every radar scan using a dy-

namic correction method based on an average ZH–ZDR

relation derived from scattering simulations, as explained

in Kalogiros et al. (2014).

After rain-path attenuation and VPR correction, the

rainfall estimation and microphysical algorithms are

applied (Kalogiros et al. 2013a); summary of these

equations can be found in the appendix.

It should also be noted here that the DOW X-band

radar dataset has knownmeasurement noise. Indeed the

measured ZDR, rHV, and fDP were noisy (e.g., 0.6 dB

standard deviation ofZDR noise, 48 for fDP, and 0.02 for

rHV), however a moderate filtering with61 gate and61

ray reduced the noise significantly. Moreover, for mea-

sured KDP values a 2-km window moving linear fit has
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been applied, which makes the results less affected by the

noise in the raw data. Finally, only events with significant

rainfall that exhibit the highest-quality DOW measure-

ments have been selected for this study, which include the

following dates: 7, 12, 13, and 17 November 2015; 5, 8, 9,

17, and 18 December 2015; and 12 January 2016.

3. Evaluation methodology

The evaluation of the SCOP-ME algorithm was con-

ducted against reference in situ rain gauge, disdrometer,

and MRR measurements. Based on the ten rain events

mentioned above, coincident DOW is extracted, dis-

drometer, rain gauge, and MRR observations with sig-

nificant rain in the path between the radar and the in situ

measurements. In the comparison of reflectivities be-

tween radar and disdrometer, the radar measurement

volume above the disdrometer was used at instanta-

neous time intervals. The time delay due to raindrops

falling from the altitude of the radar sampling volume

above the disdrometer to ground level is taken into ac-

count in the microphysical algorithm used (Kalogiros

et al. 2013a). The rainfall measurements are accumulated

for 15-min and hourly time intervals for evaluation.

Throughout the study, evaluation was divided between

the closest (first and second) and farthest (third and

fourth) in situ stations and at the lowest (2.88 and 3.08)
and highest (7.08, 9.08, and 11.08) elevation angles.

To investigate the agreement among the different

products, quantitative and graphical measures are

used. The quantitative statistics include mean relative

error (MRE), normalized central root-mean-square er-

ror (nCRMSE), and correlation coefficient (CORR).

MRE and nCRMSE are defined below:

MRE5
�(R2D)

�D
, (1)

nCRMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M
�
�
R2D2

1

M
�(R2D)

�2s

1

M
�D

, (2)

where D represents disdrometer and rain gauge mea-

surements, R represents radar estimates, and M rep-

resents the sample size (number of coincident data).

The MRE is an error metric measuring the systematic

error component with values greater or smaller than

zero indicating over or underestimation, respectively,

nCRMSEmeasures the random component of error, as

bias has been removed. Correlation coefficient indi-

cates the temporal similarity among rain gauge, dis-

drometer, and the DOW estimates.

To evaluate the performance of the SCOP-ME at-

tenuation correction algorithm, first, the rain-path at-

tenuation and VPR corrected horizontal polarization

ZH (hereinafter referred to as corrected ZH) reflectivity

by the radar to the reflectivity calculated based on the

T-matrix simulations of the observed raindrop spectra

by the disdrometers are compared. Comparison is per-

formed through scatterplots and by calculating the

above statistical metrics (CORR and MRE). At one

in situ station collocated MRR and disdrometer ZH

data were used to make inferences in between the var-

iability between disdrometer and collocated MRR ver-

sus the farawayDOWcorrectedZHmeasurements. Next,

to evaluate the performance of the attenuation correc-

tion, error statistics of the reflectivity measurements are

provided by conditioning relative to path-integrated at-

tenuation (PIA). PIA is determined by calculating the

difference between the reflectivity measured by DOW

and that calculated from disdrometer measurements;

the PIA ranges are 0.5–2, 2–4, 4–6, and .6 dB.

Next, comparisons of rainfall estimates from SCOP-

ME algorithm to measurements from rain gauges and

disdrometers are conducted, respectively, by using quan-

titative and graphical measures at 15-min and hourly time

intervals. Error statistics include MRE, CORR, and

nCRMSE.As we cannot assume the in situ stations (rain

gauges and disdrometers) are error-free, rain gauge

rainfall measurements are compared against collocated

disdrometer rainfall measurements; the variability of

the rainfall measurement difference of the two in situ

stations represents the reference uncertainty and pro-

vides a baseline for comparing the in situ measurements

to the SCOP-ME rainfall estimates. It should be noted

that in addition to measurement error, scale mismatch

between radar measurements and in situ station obser-

vations has been written about extensively in the liter-

ature. In space, the in situ stations provide point-wise

measurements, meanwhile radar provide an averaged

value for each resolution volume which is much larger

than the volume representative of the gauge or dis-

drometer observations. Meanwhile on the temporal

sampling, the rain gauges measure cumulative rainfall

with the resolution of 0.254mm at the ground, the ra-

dar measure instantaneous rainfall rate. Keeping these

in mind, in order to minimize the impact of scale mis-

match, measurements are evaluated at higher spatial

and temporal resolutions and closer to the ground.

Moreover, the comparisons are conducted only at the

locations of rain gauges and disdrometers. Another im-

portant note to mention here is the disdrometer mea-

surement limitation at small droplets due to light rain

events observed in OLYMPEX campaign. This mea-

surement limitation was clearly observed inD0 versusNw
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plots. To avoid this limitation, light rainfall events were

excluded from the analysis throughout this study.

A comparison of bulk statistics provided by condi-

tioning rainfall magnitudes to three groups (less than

40th quantile, between 40th and 80th quantiles, and

greater than 80th quantile) provided insight into the

performance of the SCOP-ME rainfall retrieval for

different rainfall magnitudes. Moreover, event-based

maps provided the spatial distribution of rainfall

derived from SCOP-ME algorithm rainfall retrieval.

Finally, SCOP-ME algorithm rain microphysics param-

eters median volume diameter D0 (mm) and intercept

parameterNw (mm21m23) were evaluated by comparing

their distribution to corresponding parameters derived

from the disdrometer measurements.

4. Results

a. Attenuation and VPR correction

The performance of the SCOP-ME attenuation

correction and the VPR correction are evaluated by

comparing DOW X-band radar measurements of hori-

zontal reflectivity ZH and differential reflectivity ZDR

to disdrometer-derived ZH and ZDR. Moreover, collo-

cated disdrometer and MRR ZH measurements are

evaluated against each other. As mentioned in the pre-

vious section, the results are grouped according to ele-

vation angle (lowest and highest) and distance of

disdrometers (closest and farthest disdrometers) to the

DOW X-band radar location. Finally, bulk statistics

are provided comparing DOW X-band radar to dis-

drometer measurements by conditioning to different

PIA values.

Figure 2 shows density scatterplots of the rain-path

attenuation and VPR correction and bias adjusted

X-band radar horizontal ZH and differential ZDR re-

flectivity against corresponding closest disdrometers for

the lowest (2.88 and 3.08; Figs. 2a,c) and highest (78, 98,
and 118; Figs. 2b,d) elevation angles; Table 2 shows the

height of each of these bins over each disdrometer.

Moreover, the CORR and MRE statistics are reported

on each panel. For this analysis ZH values greater than

FIG. 2. Attenuation-corrected (a),(b) horizontal reflectivity ZH and (c),(d) differential reflectivity ZDR (dB)

comparison for the (left) lowest elevation angle and (right) highest elevation angle between the disdrometer and

DOW for the closest APU disdrometers.
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20 dBZ and PIA values less than 6dB are considered.

Compared to the closest disdrometers attenuation and

VPR correction of SCOP-ME algorithm provided al-

most unbiased results for both ZH and ZDR for both

elevation angles. The correlation coefficient of DOW

X-band radar ZH and ZDR measurements compared to

disdrometers for lowest elevation angle are 0.92 and

0.51, respectively, and the mean relative error values are

0.01 for both measurements. One can argue that the

density scatterplots (especially for ZDR) look noisy; this

could be explained with measurement errors, the dif-

ference in height and spatial resolution between the

radar volume and the disdrometer. However, the im-

portant information here is that the mean relative error

is shown to be negligible. Similar scatters have been

observed in past studies over complex terrain

(Anagnostou et al. 2018, 2009, 2010). CORR of ZH for

the highest elevation angle decreased slightly (from 0.92

to 0.81) from that for the lowest elevation angle, which is

expected due to the inclination angle of the beam and

sampling of raindrops at higher altitude in the atmo-

sphere. The highest density for ZDR measurements of

the lowest elevation angle is close to 0; however, this

high density shifts toward radar ZDR values of 1 for the

highest elevation angle. Again, due to the same reasons,

CORR of ZDR decreased slightly (from 0.51 to 0.26)

from the lowest to the highest elevation angle.

As mentioned in the previous section, MRR and dis-

drometer instruments were collocated over one of the

in situ locations (Table 2). MRR is a vertically pointing

radar, and its reflectivity measurement uncertainty has

been reported in past studies. Frech et al. (2017) eval-

uated the performance ofMRR against disdrometer and

C-band polarimetric radar. They conclude in their study

that the agreement between MRR and radar data is

remarkably good considering the spatial and temporal

structures of the radar reflectivity. Moreover, they state

that the agreement of the reflectivities is very well for

values between about 20 and 30 dBZ. They also mention

that when the meteorological situation becomes het-

erogeneous larger differences are observed between

MRR and disdrometer. The MRR–disdrometer com-

parison is conducted to compare the variability of ZH

measurements between two collocated instruments to

the variability observed in the DOW measurement,

which was located 5 km away from the disdrometer.

Figure 3 shows the MRR versus disdrometer ZH mea-

surements plotted as density scatterplot and the associ-

ated CORR and MRE statistics. MRR values show a

consistent underestimation of disdrometer reflectivity

values. One reason for this underestimation could be

related to MRR using higher-frequency values that are

more severely affected by attenuation than DOW. This

underestimation is not the subject of the current paper,

and we will not be going into detail about the reasons

underlying it. It is noted that the variability exhibited

in the scatterplot of DOW to disdrometer (Fig. 2) is

slightly lower than that of the MRR to disdrometer

(Fig. 3), which indicates that the DOW can capture

reflectivity from a distance similarly to a collocated

MRR instrument. This, once more, qualifies the short-

range DOW reflectivity measurements over complex

terrain providing high-resolution spatial and temporal

measurements.

Figure 4 provides ray profiles of corrected ZH and

ZDR parameters and the corresponding measurements

for the event on 8December 2015. This profile was taken

fromDOW’s lowest elevation angle ray passing over the

third station (Table 2). In Fig. 4 measured values are

represented as blue lines and attenuation-corrected or

filtered values as red. The horizontal reflectivity cor-

rections by the SCOP-ME algorithm agree significantly

with the disdrometer calculation (Fig. 4a), which is lo-

cated at a distance of about 15 km.With the exception of

the spike in Figs. 4a and 4b at a range approximately

13 km from the radar, the data showed relatively stable

ZH and ZDR especially for attenuation and VPR cor-

rected values. Moreover, in Fig. 4c is shown to increase

at a relatively uniform rate over the pathlength as an-

ticipated especially for filtered values. In moderate rain

rates (;8-km radar range), where reflectivity is around

35–40dBZ for a few kilometers range interval, the dif-

ferential reflectivity takes on values of about 2dB, and

the slope is in the range of 3.7–4.0 km21.

These radar parameters measured or estimated in this

study are consistent with those of prior experimental

studies on X-band polarimetric measurements of rain-

fall (Anagnostou et al. 2004; Matrosov et al. 2002).

FIG. 3. Horizontal reflectivity ZH comparison between MRR and

collocated APU disdrometer.
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Figure 5 shows the bias (difference between radar

and disdrometer) and nCRMSE error statistics of ZH

(Figs. 5a,b,e,f) and ZDR (Figs. 5c,d,g,h) for the lowest

and highest elevation angles conditioned by PIA, where

blue bars represent measured and red bars represent

corrected ZH and ZDR parameters. It should be noted

that bias is defined here as the difference of DOW to

disdrometer and onlyZH values greater than 20dBZ are

considered. As the figure shows, the corrected ZH

measurements had a bias in the range of 65 dB, and

nCRMSEwas around 10% for all PIA categories for the

lowest elevation angle. Most important to note is that

the attenuation and VPR correction performances were

nearly independent of PIA. For the lowest elevation

angle, bias and its variation for measured ZH values

increased as PIA increased; meanwhile, bias for cor-

rected ZH remained similar for different PIA ranges

except PIA values greater than 6 where the variation of

the bias increases however mean bias remained same

with other PIA categories. Mean bias for corrected ZH

values is almost zero for all PIA categories and for the

highest PIA range there is a slight overestimation, while

for measuredZH values underestimation in all categories

is observed, which is significant underestimation for the

highest PIA category. In general, nCRMSE performance

of measured and corrected ZH values are very similar to

each other and all are smaller than 0.15. Performance for

the highest elevation angle differed slightly from that for

the lowest. In general, bias increased slightly meanwhile

variation increased for both measured and corrected ZH

comparisons, as did nCRMSE. The higher variation in

bias for the highest PIA category for the highest elevation

angles can be explained by beam interception by a bright

band.Moreover, attenuation correction brought this high

variation in bias to almost unbiased conditions, and, as

can be clearly seen from Fig. 5b, correction was stable

across the different PIA values except the highest PIA

category where the variation remains more or less the

same compared tomeasured variation. It should be noted

that the bias for the corrected ZH exhibited slight over-

estimation for the highest PIA values.

The evaluation for ZDR showed slightly better results

compared to ZH results, bias for both elevation angles

were almost zero, with slightly lower variation for all

PIA categories. Bias for lowest elevation angle for both

measured and corrected ZDR is almost zero where the

variation decreases slightly with increasing PIA cate-

gories. Meanwhile, bias for highest elevation angle for

both measured and corrected ZDR is underestimated

slightly when the variation of each PIA category is similar

to each other. On the other hand, nCRMSE showed de-

pendence on PIA, with slightly higher values at all PIA

categories above 0.7dB. This result is in agreement with

findings by Anagnostou et al. (2013) and Kalogiros et al.

(2013b). The latter reported that the SCOP-ME algo-

rithm systematically underestimated in cases of strong

convective cells associated with large PIA and ZDR less

than 21dB values, due to the presence of mixed-phase

hydrometeors in the path of the radar beam.

b. Rain rate retrieval

In this section, the rainfall retrieval performance of

SCOP-ME is evaluated against disdrometers and rain

FIG. 4. Ray profiles of measured (blue line) and attenuation-

corrected (red line) (a)ZH, (b)ZDR, and (c)fDP for the 8Dec 2015

event at 0238 UTC. The gray regions represent the bright band.
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gauges for two different temporal resolutions, hourly

and 15min, over the closest and farthest in situ stations.

It should be noted here that the rainfall retrieval has

been conducted after applying rain-path attenuation

and VPR correction to the reflectivity measurements.

Hence estimated rainfall at and above the brightband

values are adjusted due to the VPR correction. In Fig. 6,

the effect of rain-path attenuation and VPR correction

on rainfall estimates is shown in an accumulated rainfall

map of SCOP-ME retrieval for DOW for one event

(8 December 2015). The application of the radar rainfall

algorithms over highly complex terrain is very de-

manding as can be seen from the beam blocked or

ground cluttered sectors in this figure. Figure 6a repre-

sents the accumulated rainfall values without atten-

uation and VPR correction, at a longitude higher

than2123.68 a brightband effect and strong drop behind

due to snow return and brightband attenuation effect is

observed. Figure 6b represents the accumulated rainfall

values derived from SCOP-ME after rain-path attenu-

ation and VPR correction was applied to the reflectivity

measurements, where the brightband removal and en-

hancement due to attenuation correction can be ob-

served. The spatial variability of the event was captured

well by DOW. At around 2123.58 longitude and

47.68 latitude (Fig. 6a) the bright band is observed, when

Fig. 6b is checked for the same region, the bright band

is corrected and the region behind the brightband

enhancement of the rainfall due to attenuation correc-

tion can be observed.

Figure 7 shows a rainfall comparison of SCOP-ME

retrieval at all elevation angles against the closest in situ

disdrometers (Figs. 7a,d) and rain gauges (Figs. 7b,e)

and of collocated disdrometer versus rain gauge mea-

surements (Figs. 7c,f). The figure provides a density

scatterplot and reports corresponding CORR, MRE,

and nCRMSE statistics for two different time intervals

(hourly and 15min). It should be noted that rainfall

values of 0mmh21 or 0mm (15min)21 were excluded

from the analysis.

Anagnostou and Krajewski (1999) had argued that

uncertainty due to measurement error of rain gauge

subgrid rainfall variability, can contribute up to 60% of

the random differences observed in radar–rain gauge

comparisons. Moreover, the gauge–radar or disdrometer–

radar differences account for all of the error factors

combined and do not provide information about the

individual sources of error. To understand the reference

measurement uncertainty, in this study the difference

of two collocated in situ measurements (rain gauge

to disdrometer) is compared to quantify the random

component of the rain gauge and disdrometer mea-

surement error.

The nCRMSE for the hourly (15min) rain gauge to

disdrometer rainfall is 0.4 (0.6), which is more than 50%

that of the radar versus disdrometer (Fig. 7a) or rain

FIG. 5. Bias and nCRMSE bulk error statistics of measured (blue bars) and attenuation-corrected (red bars) (a),(b),(e),(f) horizontal

reflectivity ZH and (c),(d),(g),(h) differential reflectivity ZDR parameters vs PIA. Results are presented for the lowest elevation angles in

(a), (c), (e), and (g) and the highest elevation angles in (b), (d), (f), and (h).
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gauge (Fig. 7b) comparisons. Keeping this information

in mind, further evaluation of the SCOP-ME rainfall

retrieval against the rain gauge and disdrometer is

conducted. The performances (CORR, MRE and

nCRMSE) of the hourly and 15-min rainfall compari-

sons are very similar to each other. Meanwhile the

performance of the radar versus disdrometer and radar

versus rain gauge has one significant difference: while

radar versus disdrometer reports an MRE value of 0.12,

the radar versus rain gauge reports 20.15. This differ-

ence is explained by the systematic difference observed

in the comparison of rain gauge to disdrometer mea-

surements. Other than the systematic error, CORR and

nCRMSE values are very similar for the comparisons of

SCOP-ME estimates to disdrometer and rain gauge

measurements.

Figure 8 presents the bulk statistics of SCOP-ME rain-

fall retrieval versus disdrometer for the lowest (Figs. 8a,b)

and highest (Figs. 8c,d) elevation angles, conditioned

by three different reference rainfall magnitude ranges

(less than 40th quantile, in between 40th and 80th

quantiles, and greater than 80th quantile); the blue (red)

bars represent the closest (farthest) in situ stations for

15-min temporal resolutions. Since the statistics were

similar to each other for 15-min and hourly rainfall

values here only the 15-min rainfall bulk statistics is

reported. Figures 8a and 8c represent ratio of SCOP-ME

rainfall versus corresponding disdrometer rainfall value

and Fig. 8b represents nCRMSE values. The solid black

line on the nCRMSE plots represents corresponding

values calculated from collocated disdrometer to rain

gauge rainfall measurements for each quantile interval.

The SCOP-ME rainfall retrieval overestimates slightly

the lowest rainfall magnitudes meanwhile it shifts to

slight underestimation for highest rainfall magnitudes

for both closest and farthest disdrometers. The variation

of the ratio significantly diminishes as the rainfall mag-

nitudes increase for both the lowest and highest eleva-

tion angles. In general, the trend of the ratios is similar

when the lowest and highest elevations are compared to

each other with the highest elevation angles’ mean ratio

value being slightly higher than the value of the lowest

elevation angles. The nCRMSE values introduced from

measurement error (rain gauge versus disdrometer) is

more than 70% for the lowest elevation angles’ evalu-

ation. Moreover, the farthest disdrometer’s nCRMSE

values for each rainfall magnitude is significantly higher

than the closest disdrometers. For both the closest

and farthest disdrometers, the nCRMSE values are

decreasing slightly as the rainfall magnitude is increasing.

The nCRMSE values for the highest elevation angles’

lowest rainfall magnitude are significantly (1–1.3)

higher compared to the lowest elevation angles (0.6–1),

while the rest of the rainfall magnitudes are similar to

each other.

Last, event-based X-band radar retrieved rainfall is

compared against the corresponding closest disdrometer

for the lowest elevation angle (Fig. 9). For this com-

parison bias (difference of radar to disdrometer) and

normalized absolute error [absolute error normalized by

the reference (disdrometer)] are calculated for each

event. Bias (Fig. 9a) varies from 22.5 to 2.5 for the

disdrometer comparison. The bias exhibits no overall

trend with respect to the event-based radar rainfall for

the disdrometer comparison. It should be noted that in

monitoring heavy rainfall, radar retrieval should not

increase proportionally with the rainfall intensity. Most

importantly, the X-band radar retrieval is almost un-

biased in the overall sense. The normalized absolute

error (Fig. 9b), on the other hand, exhibits an in-

creasing trend with increasing rainfall intensity. These

results align very closely with the Wang and Chandrasekar

(2010) study where they compared an X-band radar

FIG. 6. Color map of accumulated rainfall for 8 Dec 2015 event

estimated from DOW (SCOP-ME algorithm) (a) without attenu-

ation correction and (b) with attenuation correction.
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network against a rain gauge network over southwest

Oklahoma.

c. Rainfall DSD parameters

In this section the accuracy of the estimation of rain-

fall DSD–normalized gamma model parameters from

DOW observations are investigated. The SCOP-ME

algorithm error statistics are evaluated against the two

closest and farthest APU disdrometers for all elevation

angles. The comparison is conducted only for convective

rains where the instantaneous rain rate is greater than

0.2mmh21. Figure 10 shows the probability distribu-

tion plots of the DOW estimates of the two DSD–

normalized gamma model parameters (Nw and D0)

against parameters derived from disdrometer observed

spectra using the DSD moments method (Bringi et al.

2003). SCOP-ME D0 estimates of all elevation angles

exhibited underestimation values below 0.8 and over-

estimation values above 0.8. SCOP-ME Nw performance

of all elevation angles shows slight underestimation at

values less than 3 and above 4.5, meanwhile slight over-

estimation at values in between 3 and 4.5.

Figure 11 presents the density scatterplots of the two

DSD parameters (log10Nw versus D0) for disdrometer

(Fig. 11b) and DOW (Fig. 11a) for all elevation angles.

As shown in this figure, DOW SCOP-ME estimates

give a negative slope similar to the slope of the APU

reference measurements. It is clear from this figure the

similarities in terms of size dimensions (on both the ra-

dar and disdrometers, theD0 ranges between 0.5 and 1.5

and log10Nw between 3.5 and 5) and the average slope of

log10Nw–D0 relation in the SCOP-ME retrieval and

reference parameters. As shown in the figure, the core of

the SCOP-ME density is over D0 estimates of 1.1–1.2

meanwhile disdrometer estimates are over 0.9–1. This

overestimation is consistently seen in the marginal PDF

ofD0 shown in Fig. 10. These results are in agreement

to those presented in Anagnostou et al. (2013) study,

which compared the SCOP-ME algorithm to three

other algorithms. In that study SCOP-ME D0 esti-

mates were slightly overestimating the reference D0

estimates and the core of the SCOP-ME density was

in the range of 1.3–1.4 while the corresponding dis-

drometer estimates were between 1.1 and 1.2. This

could be due to the generally low rainfall rates and

smallD0 values recorded during the campaign, which

may introduce sampling errors in disdrometers or

biases due to measurement noise or remaining clutter

in radar estimates.

The bulk statistics of the error of the DSD parameters

estimated from the SCOP-ME algorithm to those de-

rived from the disdrometer observations can be found in

Table 3. Results are presented for all elevation angles

and for the closest and farthest disdrometers. There is a

FIG. 7. Density scatterplots of DOW (SCOP-ME retrieval) vs closest in situ (a),(d) APU disdrometers and (b),(e) rain gauges rainfall

rates for (top) hourly and (bottom) 15-min temporal resolutions. Density scatterplots of APU disdrometer vs rain gauge rainfall rates for

(c) hourly and (f) 15-min temporal resolutions.
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slight overestimation ofD0 values for close disdrometers

(Bias 5 0.03) and slight underestimation for farthest

disdrometers (Bias520.03). The nCRMSE values ofD0

for the closest and farthest disdrometers exhibited similar

performances with 0.16 and 0.1. The Nw showed slightly

higher bias values compared to D0 especially for the far-

thest disdrometers. Moreover, the closest disdrometers

exhibited slight underestimation (Bias 5 20.05), mean-

while, the farthest disdrometers had slight overestimation

(Bias5 0.15). The nCRMSE values ofNw are lower than

D0 with 0.05 and 0.09.

5. Discussion

To summarize the performance of the rainfall re-

trieval, mean bias (MB), normalized mean bias (NB),

normalized absolute error (NAE), and normalized

standard (root-mean-square) error (NSE) were calcu-

lated for the radar lowest elevation angle against the

closest disdrometer rainfall values. NB is the differ-

ence between the mean estimated and reference values

normalized to the mean reference value. NSE is the

root-mean-square error normalized with respect to the

mean reference value. The aforementioned statistics are

calculated for a15-min (hourly) time interval over clos-

est disdrometers which are reported as MB of 5.8mm

(0.8mm), NB of 14.03% (11.5%), NSE of 68.8%

(61.3%), and NAE of 49.1% (42.9%). The farthest dis-

drometers provided similar statistics. These statistics

show an excellent performance of the SCOP-ME rain-

fall retrieval system for the 10 events examined in this

study. These results are encouraging especially when

compared to the literature, and qualify the SCOP-ME

retrieval as a great data source of high-resolution spatial

and temporal precipitation variability in complex ter-

rain. For comparison, we summarize below XPOL

rainfall estimation performance results from studies in

the literature.

Chandrasekar et al. (2012) evaluated X-band dual-

polarization radar retrievals over low terrain for high

rainfall magnitudes and concluded that the hourly

rainfall estimates compared to gaugemeasurement have

am MB of 3.74 and NAE of 25%. Lim et al. (2013)

conducted precipitation quantification using X-band

FIG. 8. Bias and nCRMSE bulk statistics of SCOP-ME retrieval error against APU disdrometer derived rain

rates vs rainfall magnitude. Results are presented for the (a),(b) lowest and (c),(d) highest elevation angles’

15-min temporal resolution.
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dual-polarization radar from Hydrometeorology Test-

bed in orographic terrain of California against rain

gauges. In this study rainfall retrieval was conducted by

using the KDP filtering method and developing a new

KDP method. Instantaneous rainfall comparison was

conducted for these two retrieval techniques against rain

gauges where NB is calculated for the KDP filtering

method (new KDP method) as 21.24% (20.19%) and

NAE was calculated as 42.41% (39.28%).

Wang and Chandrasekar (2010) conducted a perfor-

mance evaluation of an X-band dual-polarization radar

network over southwestern Oklahoma. Rainfall re-

trieval was conducted by using an adaptive KDP esti-

mation. The performance evaluation was conducted

against a rain gauge network in which continuous rain-

fall accumulations from gauge measurements were

considered as baseline. The NAE at hourly resolution

was 22.76% and MB was 4.26mm.

Shi et al. (2018) conducted a performance evaluation

of an X-band dual-polarization radar over Guangdong

province, China. In their study they evaluated two

different polarimetric rainfall retrievals: R(ZH, ZDR)

and R(KDP). These X-band radar retrievals were com-

pared to in situ rain gauges at hourly time intervals

and NB was shown to be 213.62% and 210.65% for

R(ZH, ZDR) and R(KDP), respectively. They concluded

that the difference of the two algorithms is not remarkable,

which implies that attenuation and bias correction are

critical for X-band radar rainfall retrieval applications.

Anagnostou et al. (2013) evaluated the herein

SCOP-ME algorithm against disdrometer rainfall ob-

servations and concluded that retrieval has low relative

error in all PIA categories where relative error ranged

between 10% underestimation and 1% overestimation,

and relative root-mean-square error was in the range of

0.8–0.9.

Koffi et al. (2014) evaluated DOW retrievals over low

terrain at hourly time scale, and concluded that rela-

tive root-mean-square error was below 50% at rainfall

magnitudes below 10mmh21 and below 30% above

10mmh21. Shi et al. (2018) evaluated DOW retrievals

over complex terrain and concluded that their hourly

FIG. 9. (left) Event-wise bias and (right) normalized absolute error of SCOPE-ME retrieval vs closest disdrometer

rainfall magnitudes for (a),(b) hourly and (c),(d) 15-min rainfall for lowest elevation angle.
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rainfall estimates compared to gauge measurements

had a normalized mean bias of 210.65%.

The accuracy of the radar parameters estimated in

this study is consistent to prior experimental studies

on X-band polarimetric measurements of rainfall

(Anagnostou et al. 2004; Anagnostou et al. 2013, 2018;

Matrosov et al. 2002; Kalogiros et al. 2013a). The

nCRMSE for ZDR showed dependence on PIA cat-

egories, with significantly high values at PIA values

above 2 dB. These results are in agreement with those

of Anagnostou et al. (2013) and Kalogiros et al. (2013b).

In the latter study, the authors reported the SCOP-ME

algorithm systematically underestimated in cases of

strong convective cells with large PIA andZDR at values

less than 21dB, due to the presence of mixed-phase

hydrometeors in the path of the radar beam (Kalogiros

et al. 2013b).

6. Closing remarks

In this study we applied the SCOP-ME algorithm

in the OLYMPEX X-band dual-polarization radar

(DOW) observations, and evaluated its performance

against in situ observational data collected over complex

terrain.

The corrected for rain-path attenuation and VPR ZH

measurements exhibited an overall good performance,

with low bias compared to collocated disdrometer-

derived ZH values. The correction of ZH was nearly

independent of PIA. The lowest elevation beams

FIG. 11. Density scatterplots of log10Nw (mm21m23) vs D0 (mm) from (a) DOW (SCOP-ME retrieval) and all

elevation angles and (b) APU disdrometers.

FIG. 10. Probability density functions of (a) Nw and (b) D0 derived from DOW (SCOP-ME retrieval) and APUs.
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exhibited better performance than beams at higher el-

evation angles when bulk statistics were checked.

Evaluation forZDR showed good results in terms of bias,

for both elevation angles having almost zero bias with

slight lower variation for each PIA category and less

PIA dependence.

The error statistics of the SCOP-ME rainfall estima-

tion were based on in situ rain gauges and disdrometer

rainfall observations for 15-min and hourly temporal

resolutions. The results showed that SCOP-ME has a

low bias, especially in higher magnitudes for both tem-

poral resolutions. It is noted that the lowest rainfall

magnitudes exhibited the highest mean bias values, so

care should be taken when rain rates of these magnitude

are used for validation of satellite precipitation datasets.

Moreover, the nCRMSE determined from the differ-

ences of disdrometers to collocate rain gauges was used

to define the reference measurement error variance.

Hence, inferences made by comparing reference rainfall

nCRMSE to those determined from the radar to dis-

drometer or radar to rain gauge comparisons are used to

understand the random error component of SCOP-ME

retrieval.

Last, evaluation ofmicrophysical parameters from the

DOW dual-polarization observations was conducted

using in situ disdrometer observations. Overall,

SCOP-ME estimates of the D0 parameter exhibited

low bias and performed well for all PIA ranges,

meanwhile these had relatively higher nCRMSE

values. TheNw estimates, exhibited similar bias values

with higher variation. Meanwhile nCRMSE values

for Nw had less dependence on the different PIA

categories.

Extension of this work in a future study would include

evaluation of the algorithm in additional complex ter-

rain areas to generalize the SCOP-ME performance

results. These future studies would include experimental

data from multiple regions including the Alps and

Andes, and mountainous areas in Arizona, Colorado,

and South Korea. The goal is to demonstrate that an

algorithm with small parameterization error like SCOP-

ME applies to any X-band dual-polarization radar over

complex terrain, and its estimators can be considered

as a ground truth precipitation product. Eventually

these high-resolution precipitation datasets will be used

to evaluate more extensively PMW retrievals similar to

Derin et al. (2018), which could provide significant in-

formation to algorithm developers of global satellite

precipitation datasets.
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APPENDIX

Summary of the SCOP-ME Algorithm

a. SCOP-ME algorithm

The SCOP-ME polarimetric rain microphysics algo-

rithm is based on relationships valid at the theoretical

Rayleigh scattering limit, which is corrected by a

reflectivity-weighted raindrop diameter DZ [Eq. (A1)]

multiplicative rational function to approximate the

Mie scattering character at these electromagnetic

frequencies

D
Z
5

E[D7]

E[D6]
, (A1)

where D is the raindrop equivolume diameter and E

stands for the expectation value. The expectation value

is estimated in practice as the DSD-weighted integral

over the whole range of diameter values.

Kalogiros et al. (2013a) developed the algorithm from

T-matrix scattering simulations for a wide range of DSD

parameters, a variable raindrop axis ratio around the

relationship given by Beard and Chuang (1987), a Fisher

distribution with a 7.58 circular standard deviation for

canting angle distribution, and air temperature ranging

from 58 to 208C.
The rain drop size distribution model used in the

simulations was the normalized gamma distribution

n(D), as presented in many polarimetric radar rainfall

studies (Testud et al. 2000; Bringi and Chandrasekar

2001; Illingworth and Blackman 2002):

n(D)5N
w
f (m)

�
D

D
0

�m

exp

�
2(m1 3:67)

D

D
0

�
, (A2)

where n(D) (m23mm21) is the volume density,D0 (mm)

is the median volume diameter, Nw (mm21m23) is the

intercept parameter, and m (no units) is the shape pa-

rameter. The SCOP-ME rainfall rate relation is given by

the following equation (Kalogiros et al. 2013a):

TABLE 3. Bias and nCRMSE bulk error statistics of DOW

(SCOP-ME retrieval) estimated D0 (mm) and Nw (mm21 mm23).

Results are presented separately for the closest and farthest

disdrometers.

D0 (mm)

log10(Nw)

(mm21 mm23)

Bias nCRMSE Bias nCRMSE

Closest disdrometers 0.07 0.16 20.05 0.05

Farthest disdrometers 20.03 0.10 0.15 0.09
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R5 0:8106F
R
(m)N

w
D4:67

0 f
R2
(D

0
) , (A3)

where the factor accounts for an exponential relation-

shipmore accurate than the usual power law (Atlas et al.

1973; Bringi and Chandrasekar 2001) and for the ter-

minal velocity of raindrops against their diameter. The

median volume diameter D0, the intercept parameter

Nw, and the shape parameter m of the DSD are esti-

mated from the polarimetric radar measurements ZH,

ZDR, and KDP and also the function FR(m) by

F
R
(m)5 0:63 1023p3 3:78

6

3:674
(3:671m)m14

G(m1 4)

3
G(m1 4:67)

(m1 3:67)(m1 4:67)
, (A4)

where G indicates the gamma function;

D
0
5D

Z
f
D0
(D

Z
) , (A5)

D
Z
5D

Z1
f
DZ1

D
Z1

� �
, (A6)

D
Z1
5 0:1802

�
Z

H

K
DP

j20:2929
DR (12 j20:4922

DR )

�1/3
, (A7)

N
W
5 3610

 
K

DP

12 j20:3893
DR

!
D24

0 f
NW2

(D
Z
), and (A8)

m5 165e22:56D0 2 1, (A9)

where DZ is the reflectivity-weighted mean diameter

(mm), jDR is the differential reflectivity in linear units,

and the horizontal reflectivity ZH in these relations is

also given in linear units (mm6mm23). For more in-

formation, the reader may see Kalogiros et al. (2013a).

b. Attenuation correction

Before applying the algorithm ZH and ZDR re-

flectivities are corrected for attenuation in rain. The

basis of the attenuation correction algorithm is the

new parameterizations of AH and ADP from dual-

polarization radar observables ZH, ZDR, and KDP in

rain, which were found from T-matrix scattering simu-

lations at X band (9.37GHz), carried out for a very wide

range of values of rain DSD and drop shape parameters,

air temperature, and an elevation of the radar antenna

close to zero (Kalogiros et al. 2014).

c. VPR correction

Reflectivity measurements and rainfall estimates in

plan position indicator (PPI) scans of polarimetric

weather radars in the melting layer (bright band) and

the snow layer above it are corrected for the vertical

profile of reflectivity or rainfall (VPR) by following the

work presented in Kalogiros et al. (2013b). The method

for the detection of the boundaries of the melting layer

in each radar ray is based on the well-established char-

acteristic of local minimum of copolar correlation co-

efficient in the melting layer, with the addition of

empirical acceptance criteria for the detections. A scan-

average apparent VPR, which is properly scaled in

height from ray to ray to take into account any spatial

variations of the characteristics of the melting layer, is

estimated and used for the correction.
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